Structure and evolution of 4-coumarate:coenzyme A ligase (4CL) gene families

被引:105
作者
Cukovic, D [1 ]
Ehlting, J [1 ]
VanZiffle, JA [1 ]
Douglas, CJ [1 ]
机构
[1] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
adenylate-forming enzymes; Arabidopsis; parsley; phenylpropanoid metabolism; Populus; tobacco;
D O I
10.1515/BC.2001.076
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The phenylpropanoid enzyme 4-coumarate:coenzyme A ligase (4CL) plays a key role in general phenylpropanoid metabolism, 4CL is related to a larger class of prokaryotic and eukaryotic adenylate-forming enzymes and shares several conserved peptide motifs with these enzymes. In order to better characterize the nature of 4CL gene families in poplar, parsley, and tobacco, we used degenerate primers to amplify 4CL sequences from these species. In each species additional, divergent 4CL genes were found. Complete cDNA clones for the two new poplar 4CL genes were obtained, allowing examination of their expression patterns and determination of the substrate utilization profile of a xylem-specific isoform. Phylogenetic analysis of these genes and gene fragments confirmed previous results showing that 4CL proteins fall into two evolutionarily ancient subgroups. A comparative phylogenetic analysis of enzymes in the adenylate-forming superfamily showed that 4CLs, luciferases, and acetate CoA ligases each form distinct clades within the superfamily. According to this analysis, four Arabidopsis 4CL-like genes identified from the Arabidopsis Genome Project are only distantly related to bona fide 4CLs or are more closely related to fatty acid CoA ligases, suggesting that the three Arabidopsis 4CL genes previously characterized represent the extent of the 4CL gene family in this species.
引用
收藏
页码:645 / 654
页数:10
相关论文
共 21 条
[1]   4-coumarate:coenzyme A ligase in hybrid poplar -: Properties of native enzymes, cDNA cloning, and analysis of recombinant enzymes [J].
Allina, SM ;
Pri-Hadash, A ;
Theilmann, DA ;
Ellis, BE ;
Douglas, CJ .
PLANT PHYSIOLOGY, 1998, 116 (02) :743-754
[2]  
BECKERANDRE M, 1991, J BIOL CHEM, V266, P8551
[3]   STRUCTURE AND ELICITOR OR UV-LIGHT-STIMULATED EXPRESSION OF 2 4-COUMARATE-COA LIGASE GENES IN PARSLEY [J].
DOUGLAS, C ;
HOFFMANN, H ;
SCHULZ, W ;
HAHLBROCK, K .
EMBO JOURNAL, 1987, 6 (05) :1189-1195
[4]   Phenylpropanoid metabolism and lignin biosynthesis: From weeds to trees [J].
Douglas, CJ .
TRENDS IN PLANT SCIENCE, 1996, 1 (06) :171-178
[5]   A SIMPLE AND RAPID METHOD FOR THE PREPARATION OF PLANT GENOMIC DNA FOR PCR ANALYSIS [J].
EDWARDS, K ;
JOHNSTONE, C ;
THOMPSON, C .
NUCLEIC ACIDS RESEARCH, 1991, 19 (06) :1349-1349
[6]   Three 4-coumarate:coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms [J].
Ehlting, J ;
Büttner, D ;
Wang, Q ;
Douglas, CJ ;
Somssich, IE ;
Kombrink, E .
PLANT JOURNAL, 1999, 19 (01) :9-20
[7]   PcMYB1, a novel plant protein containing a DNA-binding domain with one MYB repeat, interacts in vivo with a light-regulatory promoter unit [J].
Feldbrugge, M ;
Sprenger, M ;
Hahlbrock, K ;
Weisshaar, B .
PLANT JOURNAL, 1997, 11 (05) :1079-1093
[8]   PHYSIOLOGY AND MOLECULAR-BIOLOGY OF PHENYLPROPANOID METABOLISM [J].
HAHLBROCK, K ;
SCHEEL, D .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1989, 40 :347-369
[9]   Compartmentalized expression of two structurally and functionally distinct 4-coumarate:CoA ligase genes in aspen (Populus tremuloides) [J].
Hu, WJ ;
Kawaoka, A ;
Tsai, CJ ;
Lung, JH ;
Osakabe, K ;
Ebinuma, H ;
Chiang, VL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (09) :5407-5412
[10]  
JORGENSEN RA, 1982, YB CARNEGIE I WASHIN, V81, P98