Optimality conditions for fractional variational problems with dependence on a combined Caputo derivative of variable order

被引:23
|
作者
Tavares, Dina [1 ,2 ]
Almeida, Ricardo [2 ]
Torres, Delfim F. M. [2 ]
机构
[1] Polytech Inst Leiria, Escola Super Educ & Ciencias Sociais, Leiria, Portugal
[2] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat CIDMA, P-3800 Aveiro, Portugal
关键词
fractional calculus of variations; dynamic optimization; fractional calculus; variable fractional order; 34A08; 26A33; 49K05; CALCULUS; MECHANICS; HAMILTON;
D O I
10.1080/02331934.2015.1010088
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We establish necessary optimality conditions for variational problems with a Lagrangian depending on a combined Caputo derivative of variable fractional order. The endpoint of the integral is free, and thus transversality conditions are proved. Several particular cases are considered illustrating the new results.
引用
收藏
页码:1381 / 1391
页数:11
相关论文
共 50 条
  • [21] Fractional variational calculus with classical and combined Caputo derivatives
    Odzijewicz, Tatiana
    Malinowska, Agnieszka B.
    Torres, Delfim F. M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (03) : 1507 - 1515
  • [22] Variable Order Fractional Variational Calculus for Double Integrals
    Odzijewicz, Tatiana
    Malinowska, Agnieszka B.
    Torres, Delfim F. M.
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 6873 - 6878
  • [23] Sufficient conditions for extremum of fractional variational problems
    Pattnaik, Ashapurna
    Padhan, Saroj Kumar
    Mohapatra, R. N.
    RAIRO-OPERATIONS RESEARCH, 2022, 56 (02) : 637 - 648
  • [24] Caputo derivatives of fractional variable order: Numerical approximations
    Tavares, Dina
    Almeida, Ricardo
    Torres, Delfim F. M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 35 : 69 - 87
  • [25] Fractional Differential Equations With Dependence on the Caputo-Katugampola Derivative
    Almeida, Ricardo
    Malinowska, Agnieszka B.
    Odzijewicz, Tatiana
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (06):
  • [26] Existence and Stability Results for Differential Equations with a Variable-Order Generalized Proportional Caputo Fractional Derivative
    O'Regan, Donal
    Agarwal, Ravi P.
    Hristova, Snezhana
    Abbas, Mohamed I.
    MATHEMATICS, 2024, 12 (02)
  • [27] OPTIMALITY CONDITIONS INVOLVING THE MITTAG-LEFFLER TEMPERED FRACTIONAL DERIVATIVE
    Almeida, Ricardo
    Luisa Morgado, M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (03): : 519 - 534
  • [28] Optimal control for obstacle problems involving time-dependent variational inequalities with Liouville–Caputo fractional derivative
    Parinya Sa Ngiamsunthorn
    Apassara Suechoei
    Poom Kumam
    Advances in Difference Equations, 2021
  • [29] FRACTIONAL DIFFUSION EQUATION WITH DISTRIBUTED-ORDER CAPUTO DERIVATIVE
    Kubica, Adam
    Ryszewska, Katarzyna
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2019, 31 (02) : 195 - 243
  • [30] Fractional optimal control problems: optimality conditions and numerical solution
    Sayevand, Khosro
    Rostami, Mohammadreza
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2018, 35 (01) : 123 - 148