Pressure denaturation of phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus

被引:9
|
作者
Roitel, O
Bec, N
Lange, R
Balny, C
Branlant, G
机构
[1] CNRS, IFR 24, INSERM, U128, F-34293 Montpellier 5, France
[2] Univ Nancy 1, CNRS, UMR 7567, F-54506 Vandoeuvre Les Nancy, France
关键词
glyceraldehyde-3-phosphate dehydrogenase; pressure; denaturation; dissociation; fluorescence;
D O I
10.1006/bbrc.2001.4779
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The effects of hydrostatic pressure on apo wild-type glyceraldehyde-3-phosphate dehydrogenase (wtGAPDH) from Bacillus stearothermophilus (B. stearothermophilus) have been studied by fluorescence spectroscopy under pressure from 0.1 to 650 MPa. Unlike yeast GAPDH [Ruan, K. C., and Weber, G. (1989) Biochemistry 28, 2144-2153], denaturation of the tetrameric apo wtGAPDH from B. stearothermophilus is likely to precede dissociation into subunits. As expected, denaturation is accompanied by the loss of enzymatic activity. B. stearothermophilus apo wtGAPDH interfaces are less pressure sensitive than apo yeast GAPDH ones, while NAD does not protect B. stearothermophilus wtGAPDH against denaturation by pressure. The pressure effects on B. stearothermophilus GAPDH whose R and Q-axis interfaces were destabilized by disruption of interfacial hydrogen bonds are similar to that of apo wtGAPDH. (C) 2001 Academic Press.
引用
收藏
页码:347 / 350
页数:4
相关论文
共 50 条