Travelling wave solutions of a generalized Camassa-Holm-Degasperis-Procesi equation

被引:13
作者
Deng ShengFu [2 ]
Guo BoLing [1 ]
Wang TingChun [1 ,3 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Zhanjiang Normal Univ, Dept Math, Zhanjiang 524048, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Coll Math & Phys, Nanjing 210044, Peoples R China
基金
中国博士后科学基金;
关键词
homoclinic orbits; heteroclinic orbits; peakon wave solutions; compacton wave solutions; periodic cusp wave solutions; SHALLOW-WATER EQUATION; CH-GAMMA EQUATION; BLOW-UP; GLOBAL EXISTENCE; SOLITARY WAVES; WEAK SOLUTIONS; MODIFIED FORMS; DGH EQUATION; STABILITY; SOLITONS;
D O I
10.1007/s11425-010-4122-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The travelling wave solutions of a generalized Camassa-Holm-Degasperis-Procesi equation u (t) -u (xxt) + (1+b)u (m) u (x) = bu (x) + uu (xxx) are considered where b > 1 and m are positive integers. The qualitative analysis methods of planar autonomous systems yield its phase portraits. Its soliton wave solutions, kink or antikink wave solutions, peakon wave solutions, compacton wave solutions, periodic wave solutions and periodic cusp wave solutions are obtained. Some numerical simulations of these solutions are also given.
引用
收藏
页码:555 / 572
页数:18
相关论文
共 45 条
[1]   Global conservative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (02) :215-239
[2]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[3]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[4]  
Constantin A, 1998, COMMUN PUR APPL MATH, V51, P475, DOI 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO
[5]  
2-5
[6]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[7]   Global weak solutions for a shallow water equation [J].
Constantin, A ;
Molinet, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 211 (01) :45-61
[8]   Stability of the Camassa-Holm solitons [J].
Constantin, A ;
Strauss, WA .
JOURNAL OF NONLINEAR SCIENCE, 2002, 12 (04) :415-422
[9]   On the blow-up rate and the blow-up set of breaking waves for a shallow water equation [J].
Constantin, A ;
Escher, J .
MATHEMATISCHE ZEITSCHRIFT, 2000, 233 (01) :75-91
[10]  
Degasperis A., 1999, Symmetry and perturbation theory, P23