Arbitrary-Region Raster Image Correlation Spectroscopy

被引:39
作者
Hendrix, Jelle [1 ,5 ,6 ]
Dekens, Tomas [2 ,3 ]
Schrimpf, Waldemar [4 ]
Lamb, Don C. [4 ]
机构
[1] Katholieke Univ Leuven, Lab Photochem & Spect, Div Mol Imaging & Photon, Leuven, Belgium
[2] Vrije Univ Brussel, Dept ETRO, Brussels, Belgium
[3] iMinds Vzw, Zwijnaarde, Belgium
[4] Univ Munich, Dept Chem, Munich, Germany
[5] Hasselt Univ, Fac Med & Life Sci, Diepenbeek, Belgium
[6] Hasselt Univ, Biomed Res Inst, Diepenbeek, Belgium
关键词
FLUORESCENCE CORRELATION SPECTROSCOPY; LASER-SCANNING MICROSCOPE; FLUCTUATION CORRELATION SPECTROSCOPY; ENDOPLASMIC-RETICULUM; LIVE CELLS; DIFFUSION; BRIGHTNESS; MEMBRANES; DYNAMICS; NUMBER;
D O I
10.1016/j.bpj.2016.09.012
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Combining imaging with correlation spectroscopy, as in raster image correlation spectroscopy (RICS), makes it possible to extract molecular translational diffusion constants and absolute concentrations, and determine intermolecular interactions from single-channel or multicolor confocal laser-scanning microscopy (CLSM) images. Region-specific RICS analysis remains very challenging because correlations are always calculated in a square region-of-interest (ROI). In this study, we describe a generalized image correlation spectroscopy algorithm that accepts arbitrarily shaped ROIs. We show that an image series can be cleaned up before arbitrary-region RICS (ARICS) analysis. We demonstrate the power of ARICS by simultaneously measuring molecular mobility in the cell membrane and the cytosol. Mobility near dynamic subcellular structures can be investigated with ARICS by generating a dynamic ROI. Finally, we derive diffusion and concentration pseudo-maps using the ARICS method. ARICS is a powerful expansion of image correlation spectroscopy with the potential of becoming the new standard for extracting biophysical parameters from confocal fluorescence images.
引用
收藏
页码:1785 / 1796
页数:12
相关论文
共 50 条
  • [41] Image correlation spectroscopy as a tool for microrheology of soft materials
    Kurniawan, Nicholas Agung
    Lim, Chwee Teck
    Rajagopalan, Raj
    SOFT MATTER, 2010, 6 (15) : 3499 - 3505
  • [42] The efficacy of image correlation spectroscopy for characterization of the extracellular matrix
    Mir, Sadiq Mohammed
    Baggett, Brenda
    Utzinger, Urs
    BIOMEDICAL OPTICS EXPRESS, 2012, 3 (02): : 215 - 224
  • [43] Phase-Sensitive Fluorescence Image Correlation Spectroscopy
    Clayton, Andrew H. A.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (20)
  • [44] Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy
    Digman, Michelle A.
    Gratton, Enrico
    WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE, 2009, 1 (02) : 273 - 282
  • [45] Fluorescence lifetime correlation spectroscopy: Basics and applications
    Ghosh, Arindam
    Karedla, Narain
    Thiele, Jan Christoph
    Gregor, Ingo
    Enderlein, Jorg
    METHODS, 2018, 140 : 32 - 39
  • [46] Pin-Hole Array Correlation Imaging: Highly Parallel Fluorescence Correlation Spectroscopy
    Needleman, Daniel J.
    Xu, Yangqing
    Mitchison, Timothy J.
    BIOPHYSICAL JOURNAL, 2009, 96 (12) : 5050 - 5059
  • [47] Resolving Fast, Confined Diffusion in Bacteria with Image Correlation Spectroscopy
    Rowland, David J.
    Tuson, Hannah H.
    Biteen, Julie S.
    BIOPHYSICAL JOURNAL, 2016, 110 (10) : 2241 - 2251
  • [48] Inexpensive electronics and software for photon statistics and correlation spectroscopy
    Gamari, Benjamin D.
    Zhang, Dianwen
    Buckman, Richard E.
    Milas, Peker
    Denker, John S.
    Chen, Hui
    Li, Hongmin
    Goldner, Lori S.
    AMERICAN JOURNAL OF PHYSICS, 2014, 82 (07) : 712 - 722
  • [49] Fluorescence correlation spectroscopy: The technique and its applications in soft matter
    Gupta, Anjali
    Sankaran, Jagadish
    Wohland, Thorsten
    PHYSICAL SCIENCES REVIEWS, 2019, 4 (04)
  • [50] Multifocus Fluorescence Correlation Spectroscopy with Spatially Separated Excitation Beams
    Otosu, Takuhiro
    Ishii, Kunihiko
    Tahara, Tahei
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2019, 92 (09) : 1495 - 1502