Arbitrary-Region Raster Image Correlation Spectroscopy

被引:39
作者
Hendrix, Jelle [1 ,5 ,6 ]
Dekens, Tomas [2 ,3 ]
Schrimpf, Waldemar [4 ]
Lamb, Don C. [4 ]
机构
[1] Katholieke Univ Leuven, Lab Photochem & Spect, Div Mol Imaging & Photon, Leuven, Belgium
[2] Vrije Univ Brussel, Dept ETRO, Brussels, Belgium
[3] iMinds Vzw, Zwijnaarde, Belgium
[4] Univ Munich, Dept Chem, Munich, Germany
[5] Hasselt Univ, Fac Med & Life Sci, Diepenbeek, Belgium
[6] Hasselt Univ, Biomed Res Inst, Diepenbeek, Belgium
关键词
FLUORESCENCE CORRELATION SPECTROSCOPY; LASER-SCANNING MICROSCOPE; FLUCTUATION CORRELATION SPECTROSCOPY; ENDOPLASMIC-RETICULUM; LIVE CELLS; DIFFUSION; BRIGHTNESS; MEMBRANES; DYNAMICS; NUMBER;
D O I
10.1016/j.bpj.2016.09.012
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Combining imaging with correlation spectroscopy, as in raster image correlation spectroscopy (RICS), makes it possible to extract molecular translational diffusion constants and absolute concentrations, and determine intermolecular interactions from single-channel or multicolor confocal laser-scanning microscopy (CLSM) images. Region-specific RICS analysis remains very challenging because correlations are always calculated in a square region-of-interest (ROI). In this study, we describe a generalized image correlation spectroscopy algorithm that accepts arbitrarily shaped ROIs. We show that an image series can be cleaned up before arbitrary-region RICS (ARICS) analysis. We demonstrate the power of ARICS by simultaneously measuring molecular mobility in the cell membrane and the cytosol. Mobility near dynamic subcellular structures can be investigated with ARICS by generating a dynamic ROI. Finally, we derive diffusion and concentration pseudo-maps using the ARICS method. ARICS is a powerful expansion of image correlation spectroscopy with the potential of becoming the new standard for extracting biophysical parameters from confocal fluorescence images.
引用
收藏
页码:1785 / 1796
页数:12
相关论文
共 50 条
  • [31] Fluorescence Correlation Spectroscopy: A Review of Biochemical and Microfluidic Applications
    Yu Tian
    Martinez, Michelle M.
    Pappas, Dimitri
    APPLIED SPECTROSCOPY, 2011, 65 (04) : 115A - 124A
  • [32] FCS videos: Fluorescence correlation spectroscopy in space and time
    Wohland, Thorsten
    Sim, Shao Ren
    Demoustier, Marc
    Pandey, Shambhavi
    Kulkarni, Rutuparna
    Aik, Daniel
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2024, 1868 (11):
  • [33] Exact occupation probabilities for intermittent transport and application to image correlation spectroscopy
    Coppola, S.
    Caracciolo, G.
    Schmidt, T.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [34] Image Correlation Spectroscopy: Mapping Correlations in Space, Time, and Reciprocal Space
    Wiseman, Paul W.
    FLUORESCENCE FLUCTUATION SPECTROSCOPY (FFS), PT A, 2013, 518 : 245 - 267
  • [35] Theory and practical recommendations for autocorrelation-based image correlation spectroscopy
    Robertson, Claire
    George, Steven C.
    JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (08)
  • [36] Dynamic image correlation spectroscopy (ICS) and two-color image cross-correlation spectroscopy (ICCS): concepts and application
    Wiseman, PW
    Squier, JA
    Wilson, KR
    THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION PROCESSING VII, 2000, 3919 : 14 - 20
  • [37] Measurement of cell surface protein dynamics by two-photon image correlation spectroscopy and image cross-correlation spectroscopy
    Wiseman, PW
    Squier, JA
    COMMERCIAL AND BIOMEDICAL APPLICATIONS OF ULTRAFAST AND FREE-ELECTRON LASERS, 2002, 4633 : 74 - 83
  • [38] Live cell studies of adhesion receptors by two-photon image correlation spectroscopy and image cross-correlation spectroscopy
    Wiseman, PW
    Squier, JA
    MULTIPHOTON MICROSCOPY IN THE BIOMEDICAL SCIENCES II, 2002, 4620 : 54 - 61
  • [39] Single particle raster image analysis of diffusion for particle mixtures
    Longfils, M.
    Roding, M.
    Altskar, A.
    Schuster, E.
    Loren, N.
    Sarkka, A.
    Rudemo, M.
    JOURNAL OF MICROSCOPY, 2018, 269 (03) : 269 - 281
  • [40] Intracellular kinetics of the androgen receptor shown by multimodal Image Correlation Spectroscopy (mICS)
    Chiu, Chi-Li
    Patsch, Katherin
    Cutrale, Francesco
    Soundararajan, Anjana
    Agus, David B.
    Fraser, Scott E.
    Ruderman, Daniel
    SCIENTIFIC REPORTS, 2016, 6