Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis

被引:379
作者
Jena, Umakanta [1 ]
Das, K. C. [1 ]
Kastner, J. R. [1 ]
机构
[1] Univ Georgia, Biorefining & Carbon Cycling Program, Dept Biol & Agr Engn, Athens, GA 30602 USA
基金
美国能源部;
关键词
Thermochemical liquefaction (TCL); Microalgae; Biocrude; Biofuel; MICROALGAE DUNALIELLA-TERTIOLECTA; HYDROTHERMAL LIQUEFACTION; MARINE MICROALGAE; BIO-OIL; BIOMASS; SPECTROSCOPY; TEMPERATURE; RECOVERY;
D O I
10.1016/j.biortech.2011.02.057
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
This study investigated the optimum thermochemical liquefaction (TCL) operating conditions for producing biocrude from Spirulina platensis. TCL experiments were performed at various temperatures (200-380 degrees C), holding times (0-120 min), and solids concentrations (10-50%). TCL conversion at 350 degrees C, 60 min holding time and 20% solids concentration produced the highest biocrude yield of 39.9% representing 98.3% carbon conversion efficiency. Light fraction biocrude (B-1) appeared at 300 degrees C or higher temperatures and represented 50-63% of the total biocrude. Biocrude obtained at 350-380 degrees C had similar fuel properties to that of petroleum crude with energy density of 34.7-39.9 MJ kg(-1) compared to 42.9 MJ kg(-1) for petroleum crude. Biocrude from conversion at 300 degrees C or above had 71-77% elemental carbon, and 0.6-11.6% elemental oxygen and viscosities in the range 40-68 cP. GC/MS of biocrude reported higher hydrocarbons (C-16-C-17), phenolics, carboxylic acids, esters, aldehydes, amines, and amides. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6221 / 6229
页数:9
相关论文
共 25 条
  • [11] Thermochemical liquefaction characteristics of microalgae in sub- and supercritical ethanol
    Huang, Huajun
    Yuan, Xingzhong
    Zeng, Guangming
    Wang, Jingyu
    Li, Hui
    Zhou, Chunfei
    Pei, Xiaokai
    You, Qiao
    Chen, Liang
    [J]. FUEL PROCESSING TECHNOLOGY, 2011, 92 (01) : 147 - 153
  • [12] ISAAC RA, 1985, J ASSOC OFF ANA CHEM, V68, P499
  • [13] Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass
    Jena, Umakanta
    Vaidyanathan, Nisha
    Chinnasamy, Senthil
    Das, K. C.
    [J]. BIORESOURCE TECHNOLOGY, 2011, 102 (03) : 3380 - 3387
  • [14] MICRO SEMIAUTOMATED ANALYSIS OF SURFACE AND WASTEWATERS FOR CHEMICAL OXYGEN DEMAND
    JIRKA, AM
    CARTER, MJ
    [J]. ANALYTICAL CHEMISTRY, 1975, 47 (08) : 1397 - 1402
  • [15] Distribution of intracellular nitrogen in marine microalgae: Basis for the calculation of specific nitrogen-to-protein conversion factors
    Lourenco, SO
    Barbarino, E
    Marquez, UML
    Aidar, E
    [J]. JOURNAL OF PHYCOLOGY, 1998, 34 (05) : 798 - 811
  • [16] Thermochemical liquefaction of Indonesian biomass residues
    Minowa, T
    Kondo, T
    Sudirjo, ST
    [J]. BIOMASS & BIOENERGY, 1998, 14 (5-6) : 517 - 524
  • [17] Richmond A, 1988, MICROALGAL BIOTECHNO, P85
  • [18] Hydrothermal processing of microalgae using alkali and organic acids
    Ross, A. B.
    Biller, P.
    Kubacki, M. L.
    Li, H.
    Lea-Langton, A.
    Jones, J. M.
    [J]. FUEL, 2010, 89 (09) : 2234 - 2243
  • [19] Reaction kinetics of amino acid decomposition in high-temperature and high-pressure water
    Sato, N
    Quitain, AT
    Kang, K
    Daimon, H
    Fujie, K
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (13) : 3217 - 3222
  • [20] Microalgae for the production of bulk chemicals and biofuels
    Wijffels, Rene H.
    Barbosa, Maria J.
    Eppink, Michel H. M.
    [J]. BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2010, 4 (03): : 287 - 295