Improved multipolar Poincare-Hardy inequalities on Cartan-Hadamard manifolds

被引:3
作者
Berchio, Elvise [1 ]
Ganguly, Debdip [2 ]
Grillo, Gabriele [3 ]
机构
[1] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Indian Inst Sci Educ & Res, Dept Math, Dr Homi Bhabha Rd, Pune 411008, Maharashtra, India
[3] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
关键词
Hyperbolic space; Multipolar Hardy inequality; Poincare inequality; RELLICH INEQUALITIES; SCHRODINGER;
D O I
10.1007/s10231-019-00866-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a family of improved multipolar Poincare-Hardy inequalities on Cartan-Hadamard manifolds. For suitable configurations of poles, these inequalities yield an improved multipolar Hardy inequality and an improved multipolar Poincare inequality such that the critical unipolar singular mass is reached at any pole.
引用
收藏
页码:65 / 80
页数:16
相关论文
共 17 条
[1]   BEST CONSTANTS AND POHOZAEV IDENTITY FOR HARDY-SOBOLEV-TYPE OPERATORS [J].
Adimurthi .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (03)
[2]   Geometric relative Hardy inequalities and the discrete spectrum of Schrodinger operators on manifolds [J].
Akutagawa, Kazuo ;
Kumura, Hironori .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 48 (1-2) :67-88
[3]  
[Anonymous], ARXIV170809306
[4]   An optimal improvement for the Hardy inequality on the hyperbolic space and related manifolds [J].
Berchio, Elvise ;
Ganguly, Debdip ;
Grillo, Gabriele ;
Pinchover, Yehuda .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (04) :1699-1736
[5]   Improved Lp-Poincare inequalities on the hyperbolic space [J].
Berchio, Elvise ;
D'Ambrosio, Lorenzo ;
Ganguly, Debdip ;
Grillo, Gabriele .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 157 :146-166
[6]   Sharp Poincare Hardy and Poincare Rellich inequalities on the hyperbolic space [J].
Berchio, Elvise ;
Ganguly, Debdip ;
Grillo, Gabriele .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (04) :1661-1703
[7]   IMPROVED HIGHER ORDER POINCARE INEQUALITIES ON THE HYPERBOLIC SPACE VIA HARDY-TYPE REMAINDER TERMS [J].
Berchio, Elvise ;
Ganguly, Debdip .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (05) :1871-1892
[8]   Estimates for the optimal constants in multipolar Hardy inequalities for Schrodinger and Dirac operators [J].
Bosi, Roberta .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (03) :533-562
[9]   Hardy inequalities on non-compact Riemannian manifolds [J].
Carron, G .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (10) :883-891
[10]   Improved Multipolar Hardy Inequalities [J].
Cazacu, Cristian ;
Zuazua, Enrique .
STUDIES IN PHASE SPACE ANALYSIS WITH APPLICATIONS TO PDES, 2013, 84 :35-52