Improved multipolar Poincare-Hardy inequalities on Cartan-Hadamard manifolds

被引:3
|
作者
Berchio, Elvise [1 ]
Ganguly, Debdip [2 ]
Grillo, Gabriele [3 ]
机构
[1] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Indian Inst Sci Educ & Res, Dept Math, Dr Homi Bhabha Rd, Pune 411008, Maharashtra, India
[3] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
关键词
Hyperbolic space; Multipolar Hardy inequality; Poincare inequality; RELLICH INEQUALITIES; SCHRODINGER;
D O I
10.1007/s10231-019-00866-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a family of improved multipolar Poincare-Hardy inequalities on Cartan-Hadamard manifolds. For suitable configurations of poles, these inequalities yield an improved multipolar Hardy inequality and an improved multipolar Poincare inequality such that the critical unipolar singular mass is reached at any pole.
引用
收藏
页码:65 / 80
页数:16
相关论文
共 12 条
  • [1] Improved multipolar Poincaré–Hardy inequalities on Cartan–Hadamard manifolds
    Elvise Berchio
    Debdip Ganguly
    Gabriele Grillo
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 65 - 80
  • [2] Hardy's Identities and Inequalities on Cartan-Hadamard Manifolds
    Flynn, Joshua
    Lam, Nguyen
    Lu, Guozhen
    Mazumdar, Saikat
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (01)
  • [3] Hardy’s Identities and Inequalities on Cartan-Hadamard Manifolds
    Joshua Flynn
    Nguyen Lam
    Guozhen Lu
    Saikat Mazumdar
    The Journal of Geometric Analysis, 2023, 33
  • [4] Minkowski Inequality in Cartan-Hadamard Manifolds
    Ghomi, Mohammad
    Spruck, Joel
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (20) : 17892 - 17910
  • [5] Colding-Minicozzi entropies in Cartan-Hadamard manifolds
    Bernstein, Jacob
    Bhattacharya, Arunima
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2025,
  • [6] Sobolev-Type Inequalities on Cartan-Hadamard Manifolds and Applications to some Nonlinear Diffusion Equations
    Muratori, Matteo
    Roncoroni, Alberto
    POTENTIAL ANALYSIS, 2022, 57 (01) : 129 - 154
  • [7] MULTIPOLAR HARDY INEQUALITIES ON RIEMANNIAN MANIFOLDS
    Faraci, Francesca
    Farkas, Csaba
    Kristaly, Alexandru
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2018, 24 (02) : 551 - 567
  • [8] Smoothing effects for the porous medium equation on Cartan-Hadamard manifolds
    Grillo, Gabriele
    Muratori, Matteo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 131 : 346 - 362
  • [9] Improved Multipolar Hardy Inequalities
    Cazacu, Cristian
    Zuazua, Enrique
    STUDIES IN PHASE SPACE ANALYSIS WITH APPLICATIONS TO PDES, 2013, 84 : 35 - 52
  • [10] Fourth Order Schrodinger Equation with Mixed Dispersion on Certain Cartan-Hadamard Manifolds
    Casteras, Jean-Baptiste
    Holopainen, Ilkka
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (03) : 2057 - 2092