On the number of vertices with specified eccentricity

被引:7
|
作者
Mubayi, D [1 ]
West, DB
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
eccentricity; distance; diameter;
D O I
10.1007/PL00007229
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The eccentricity of a vertex v in a graph is the maximum of the distances from v to all other vertices. The diameter of a graph is the maximum of the eccentricities of its vertices. Fix the parameters n, d, c. Over all graphs with order n and diameter d, we determine the maximum (within 1) and the minimum of the number of vertices with eccentricity c.
引用
收藏
页码:441 / 452
页数:12
相关论文
共 50 条
  • [1] Total eccentricity index of graphs with fixed number of pendant or cut vertices
    Pandey, Dinesh
    Patra, Kamal Lochan
    RICERCHE DI MATEMATICA, 2024, 73 (04) : 1873 - 1893
  • [2] On General Degree-Eccentricity Index for Trees with Fixed Diameter and Number of Pendant Vertices
    Masre, Mesfin
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2023, 14 (01): : 19 - 32
  • [3] Placing Specified Vertices at Precise Locations on a Hamiltonian Cycle
    Ronald J. Gould
    Colton Magnant
    Pouria Salehi Nowbandegani
    Graphs and Combinatorics, 2017, 33 : 369 - 385
  • [4] Placing Specified Vertices at Precise Locations on a Hamiltonian Cycle
    Gould, Ronald J.
    Magnant, Colton
    Salehi Nowbandegani, Pouria
    GRAPHS AND COMBINATORICS, 2017, 33 (02) : 369 - 385
  • [5] Total eccentricity index of trees with fixed pendent vertices and trees with fixed diameter
    Rashid Farooq
    Shehnaz Akhter
    Juan Rada
    Japan Journal of Industrial and Applied Mathematics, 2022, 39 : 443 - 465
  • [6] Total eccentricity index of trees with fixed pendent vertices and trees with fixed diameter
    Farooq, Rashid
    Akhter, Shehnaz
    Rada, Juan
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2022, 39 (01) : 443 - 465
  • [7] On AutoGraphiX Conjecture Regarding Domination Number and Average Eccentricity
    Pei, Li-Dan
    Pan, Xiang-Feng
    Tian, Jing
    Peng, Gui-Qin
    FILOMAT, 2019, 33 (03) : 699 - 710
  • [8] The Median of the Number of Simple Paths on Three Vertices in the Random Graph
    Zhukovskii, M. E.
    MATHEMATICAL NOTES, 2020, 107 (1-2) : 54 - 62
  • [9] Proofs of the AutoGraphiX conjectures on the domination number, average eccentricity and proximity
    Pei, Lidan
    Pan, Xiangfeng
    Wang, Kun
    Tian, Jing
    DISCRETE APPLIED MATHEMATICS, 2021, 289 : 292 - 301
  • [10] Wiener Index of Graphs with Fixed Number of Pendant or Cut-Vertices
    Pandey, Dinesh
    Patra, Kamal Lochan
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (02) : 411 - 431