First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures

被引:32
作者
Wang, Xiaoming [1 ]
Zebarjadi, Mona [1 ,2 ]
Esfarjani, Keivan [1 ,2 ]
机构
[1] Rutgers State Univ, Inst Adv Mat Devices & Nanotechnol, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Dept Mech & Aerosp Engn, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
THERMOELECTRIC TRANSPORT; PHOSPHORENE; CONDUCTANCE;
D O I
10.1039/c6nr02436j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work aims at understanding solid-state energy conversion and transport in layered (van der Waals) heterostructures in contact with metallic electrodes via a first-principles approach. As an illustration, a graphene/phosphorene/graphene heterostructure in contact with gold electrodes is studied by using density functional theory (DFT)-based first principles calculations combined with real space Green's function (GF) formalism. We show that for a monolayer phosphorene, quantum tunneling dominates the transport. By adding more phosphorene layers, one can switch from tunneling- dominated transport to thermionic-dominated transport, resulting in transporting more heat per charge carrier, thus, enhancing the cooling coefficient of performance. The use of layered van der Waals heterostructures has two advantages: (a) thermionic transport barriers can be tuned by changing the number of layers, and (b) thermal conductance across these non-covalent structures is very weak. The phonon thermal conductance of the present van der Waals heterostructure is found to be 4.1 MW m(-2) K-1 which is one order of magnitude lower than the lowest value for that of covalently-bonded interfaces. The thermionic coefficient of performance for the proposed device is 18.5 at 600 K corresponding to an equivalent ZT of 0.13, which is significant for nanoscale devices. This study shows that layered van der Waals structures have great potential to be used as solid-state energy-conversion devices.
引用
收藏
页码:14695 / 14704
页数:10
相关论文
共 49 条
[1]   Electron Tunneling through Ultrathin Boron Nitride Crystalline Barriers [J].
Britnell, Liam ;
Gorbachev, Roman V. ;
Jalil, Rashid ;
Belle, Branson D. ;
Schedin, Fred ;
Katsnelson, Mikhail I. ;
Eaves, Laurence ;
Morozov, Sergey V. ;
Mayorov, Alexander S. ;
Peres, Nuno M. R. ;
Castro Neto, Antonio H. ;
Leist, Jon ;
Geim, Andre K. ;
Ponomarenko, Leonid A. ;
Novoselov, Kostya S. .
NANO LETTERS, 2012, 12 (03) :1707-1710
[2]   Vertical transport in graphene-hexagonal boron nitride heterostructure devices [J].
Bruzzone, Samantha ;
Logoteta, Demetrio ;
Fiori, Gianluca ;
lannaccone, Giuseppe .
SCIENTIFIC REPORTS, 2015, 5
[3]   Ab initio transport properties of nanostructures from maximally localized Wannier functions -: art. no. 035108 [J].
Calzolari, A ;
Marzari, N ;
Souza, I ;
Nardelli, MB .
PHYSICAL REVIEW B, 2004, 69 (03)
[4]   Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures [J].
Chen, Chun-Chung ;
Li, Zhen ;
Shi, Li ;
Cronin, Stephen B. .
NANO RESEARCH, 2015, 8 (02) :666-672
[5]   Impact of bonding at multi-layer graphene/metal Interfaces on thermal boundary conductance [J].
Chen, Liang ;
Huang, Zhen ;
Kumar, Satish .
RSC ADVANCES, 2014, 4 (68) :35852-35861
[6]   Measurement and evaluation of the interfacial thermal resistance between a metal and a dielectric [J].
Chien, Heng-Chieh ;
Yao, Da-Jeng ;
Hsu, Cheng-Ting .
APPLIED PHYSICS LETTERS, 2008, 93 (23)
[7]   Tunable Transport Gap in Phosphorene [J].
Das, Saptarshi ;
Zhang, Wei ;
Demarteau, Marcel ;
Hoffmann, Axel ;
Dubey, Madan ;
Roelofs, Andreas .
NANO LETTERS, 2014, 14 (10) :5733-5739
[8]   Nanoscale device modeling: the Green's function method [J].
Datta, S .
SUPERLATTICES AND MICROSTRUCTURES, 2000, 28 (04) :253-278
[9]   Interfacial thermal conductance in graphene/MoS2 heterostructures [J].
Ding, Zhiwei ;
Pei, Qing-Xiang ;
Jiang, Jin-Wu ;
Huang, Wenxuan ;
Zhang, Yong-Wei .
CARBON, 2016, 96 :888-896
[10]   Van der Waals density functional for general geometries -: art. no. 246401 [J].
Dion, M ;
Rydberg, H ;
Schröder, E ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 2004, 92 (24) :246401-1