Core-Shell Structure and X-Doped (X = Li, Zr) Comodified O3-NaNi0.5Mn0.5O2: Excellent Electrochemical Performance as Cathode Materials of Sodium-Ion Batteries

被引:23
|
作者
Ren, Jing [1 ]
Dang, Rongbin [2 ]
Yang, Yuqiang [2 ]
Wu, Kang [1 ]
Lee, Yulin [3 ]
Hu, Zhongbo [2 ]
Xiao, Xiaoling [2 ]
Wang, Min [1 ]
机构
[1] Chinese Acad Sci, Key Lab Comprehens & Highly Efficient Utilizat Sa, Qinghai Inst Salt Lakes, Xining 810008, Peoples R China
[2] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Imperial Coll London, Dept Mat, Royal Sch Mines, Exhibit Rd, London SW7 2AZ, England
关键词
core-shell structures; cycle stability; elemental doping; O3-type cathodes; rate performances; ELECTRODE MATERIALS; NANI0.5MN0.5O2; CATHODE; POSITIVE ELECTRODE; HIGH-CAPACITY; CHALLENGES; O3-TYPE; SUBSTITUTION; TRANSITION; VOLTAGE;
D O I
10.1002/ente.201901504
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
O3-NaNi0.5Mn0.5O2 is one of the most promising materials for sodium-ion batteries, which holds advantages of high cost efficiency and environmental friendliness. However, poor cycle stability and inferior rate performance impede their further development because of complex phase transitions. Herein, the successful synthesis of O3-Na0.98X0.02Ni0.5Mn0.5O2@5%Na-Mn-O (X = Li, Zr) ensured excellent rate performance, superior cycle stability by a method of forming and comodifying a core-shell structure with elemental doping. First, a core-shell structure with high-nickel in the core, and high-manganese on the surface improve cycle stability. Second, doping Li and Zr into Na sites allow them to serve as pillars to suppress phase change according to ex situ X-ray diffraction (XRD) observations. Specifically, the capacity retention rates of Na0.98Li0.02Ni0.5Mn0.5O2@5%Na-Mn-O and Na0.98Zr0.02Ni0.5Mn0.5O2@5%Na-Mn-O samples are 61% and 67%, respectively, whereas the pristine (NaNi0.5Mn0.5O2) sample is 52% cycling at a high current density of 3 C. A double modification method is proposed to ensure excellent electrochemical performance of cathode materials.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Synthesis and Electrochemical Performance of Na0.5Li0.1Ni0.2Mn0.7Mg0.1O2 as a Cathode for Sodium-Ion Batteries
    Wang, Jin
    Zhou, Zhaofu
    Li, Yushan
    Li, Meng
    Deng, Jianqiu
    Yao, Qingrong
    Wang, Zhongmin
    Zhou, Huaiying
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (06): : 5425 - 5432
  • [22] Synthesis and Electrochemical Properties of Hexagonal Sliced LiNi0.5Mn0.5O2 as Cathode Materials for Li-ion Batteries
    Dou, Shumei
    Li, Qing
    ASIAN JOURNAL OF CHEMISTRY, 2014, 26 (09) : 2632 - 2636
  • [23] Synthesis and electrochemical performance of Li(Ni0.8Co0.15Al0.05)0.8(Ni0.5Mn0.5)0.2O2 with core-shell structure as cathode material for Li-ion batteries
    Ju, Jeong-Hun
    Ryu, Kwang-Sun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (30) : 7985 - 7992
  • [24] Superior electrochemical performance of O3-type NaNi0.5-xMn0.3Ti0.2ZrxO2 cathode material for sodium-ion batteries from Ti and Zr substitution of the transition metals
    Leng, Mingzhe
    Bi, Jianqiang
    Wang, Weili
    Xing, Zheng
    Yan, Weikang
    Gao, Xicheng
    Wang, Jingyu
    Liu, Rui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 816
  • [25] Enhanced sodium-ion storage capability of P2/O3 biphase by Li-ion substitution into P2-type Na0.5Fe0.5Mn0.5O2 layered cathode
    Veerasubramani, Ganesh Kumar
    Subramanian, Yuvaraj
    Park, Myung-Soo
    Senthilkumar, Baskar
    Eftekhari, Ali
    Kim, Sang Jae
    Kim, Dong-Won
    ELECTROCHIMICA ACTA, 2019, 296 : 1027 - 1034
  • [26] O3-NaNi0.47Zn0.03Mn0.5O2 cathode material for durable Na-ion batteries
    Meng, Xiaomeng
    Zhang, Ding
    Zhao, Zhuangzhuang
    Li, Yunfei
    Xu, Shoudong
    Chen, Liang
    Wang, Xiaomin
    Liu, Shibin
    Wu, Yucheng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 887 (887)
  • [27] Novel Core-Shell-Type Design of Na0.5[Li0.5(Ni0.8Co0.1Mn0.1)1-x (Ni0.5Co0.1Mn0.4)x]O2 Cathode Material for Sodium-Ion Batteries
    Shin, Ji-Woong
    Son, Jong-Tae
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2019, 19 (03) : 1335 - 1339
  • [28] Effect of niobium doping on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3o2 cathode materials for lithium ion batteries
    Yang, Zuguang
    Xiang, Wei
    Wu, Zhenguo
    He, Fengrong
    Zhang, Jun
    Xiao, Yao
    Zhong, Benhe
    Guo, Xiaodong
    CERAMICS INTERNATIONAL, 2017, 43 (04) : 3866 - 3872
  • [29] Highly stable Na-storage performance of Na0.5Mn0.5Ti0.5O2 microrods as cathode for aqueous sodium-ion batteries
    Zhang, Fang
    Li, Wanfeng
    Xiang, Xingde
    Sun, Molong
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2017, 802 : 22 - 26
  • [30] Preparation and Electrochemical Performances of LiNi0.5Mn0.5O2 Cathode Materials for Lithium-Ion Batteries
    Shi, Lei
    Xie, Wenting
    Ge, Qisheng
    Wang, Sen
    Chen, Da
    Qin, Laishun
    Fan, Meiqiang
    Bai, Liqun
    Chen, Zhi
    Shen, Hangyan
    Tian, Guanglei
    Lv, Chunju
    Shu, Kangying
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (06): : 4696 - 4705