Core-Shell Structure and X-Doped (X = Li, Zr) Comodified O3-NaNi0.5Mn0.5O2: Excellent Electrochemical Performance as Cathode Materials of Sodium-Ion Batteries

被引:23
|
作者
Ren, Jing [1 ]
Dang, Rongbin [2 ]
Yang, Yuqiang [2 ]
Wu, Kang [1 ]
Lee, Yulin [3 ]
Hu, Zhongbo [2 ]
Xiao, Xiaoling [2 ]
Wang, Min [1 ]
机构
[1] Chinese Acad Sci, Key Lab Comprehens & Highly Efficient Utilizat Sa, Qinghai Inst Salt Lakes, Xining 810008, Peoples R China
[2] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Imperial Coll London, Dept Mat, Royal Sch Mines, Exhibit Rd, London SW7 2AZ, England
关键词
core-shell structures; cycle stability; elemental doping; O3-type cathodes; rate performances; ELECTRODE MATERIALS; NANI0.5MN0.5O2; CATHODE; POSITIVE ELECTRODE; HIGH-CAPACITY; CHALLENGES; O3-TYPE; SUBSTITUTION; TRANSITION; VOLTAGE;
D O I
10.1002/ente.201901504
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
O3-NaNi0.5Mn0.5O2 is one of the most promising materials for sodium-ion batteries, which holds advantages of high cost efficiency and environmental friendliness. However, poor cycle stability and inferior rate performance impede their further development because of complex phase transitions. Herein, the successful synthesis of O3-Na0.98X0.02Ni0.5Mn0.5O2@5%Na-Mn-O (X = Li, Zr) ensured excellent rate performance, superior cycle stability by a method of forming and comodifying a core-shell structure with elemental doping. First, a core-shell structure with high-nickel in the core, and high-manganese on the surface improve cycle stability. Second, doping Li and Zr into Na sites allow them to serve as pillars to suppress phase change according to ex situ X-ray diffraction (XRD) observations. Specifically, the capacity retention rates of Na0.98Li0.02Ni0.5Mn0.5O2@5%Na-Mn-O and Na0.98Zr0.02Ni0.5Mn0.5O2@5%Na-Mn-O samples are 61% and 67%, respectively, whereas the pristine (NaNi0.5Mn0.5O2) sample is 52% cycling at a high current density of 3 C. A double modification method is proposed to ensure excellent electrochemical performance of cathode materials.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Regulating the local chemical environment in layered O3-NaNi0.5Mn0.5O2 achieves practicable cathode for sodium-ion batteries
    Peng, Bo
    Chen, Yanxu
    Zhao, Liping
    Zeng, Suyuan
    Wan, Guanglin
    Wang, Feng
    Zhang, Xiaolei
    Wang, Wentao
    Zhang, Genqiang
    ENERGY STORAGE MATERIALS, 2023, 56 : 631 - 641
  • [2] Suppressing multiphase transitions of an O3-NaNi0.5Mn0.5O2 cathode by iron and magnesium co-doping towards sodium-ion batteries
    Zhang, Xiaoyan
    Zhou, Ya-Nan
    Yu, Lianzheng
    Zhang, Si-Yuan
    Xing, Xuan-Xuan
    Wang, Wenlong
    Xu, Sailong
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (14) : 5344 - 5350
  • [3] Synthesis of NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries via spray pyrolysis method
    Chang, Yijiao
    Zhou, Yongmao
    Wang, Zhixing
    Li, Xinhai
    Wang, Ding
    Duan, Jianguo
    Wang, Jiexi
    Yan, Guochun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 922
  • [4] An O3-type NaNi0.5Mn0.5O2 cathode for sodium-ion batteries with improved rate performance and cycling stability
    Wang, Peng-Fei
    You, Ya
    Yin, Ya-Xia
    Guo, Yu-Guo
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (45) : 17660 - 17664
  • [5] O3-type NaNi0.5Mn0.5O2 hollow microbars with exposed {010} facets as high performance cathode materials for sodium-ion batteries
    Mao, Qianjiang
    Gao, Rui
    Li, Qingyuan
    Ning, De
    Zhou, Dong
    Schuck, Goetz
    Schumacher, Gerhard
    Hao, Yongmei
    Liu, Xiangfeng
    CHEMICAL ENGINEERING JOURNAL, 2020, 382
  • [6] A new high-performance O3-NaNi0.3Fe0.2Mn0.5O2 cathode material for sodium-ion batteries
    Xu, Shuangwu
    Chen, Hongxia
    Li, Cheng
    Nie, Rihuang
    Yang, Yutian
    Zhou, Mengcheng
    Zhang, Xinyu
    Zhou, Hongming
    IONICS, 2023, 29 (05) : 1873 - 1885
  • [7] Synthesis and characterization of Ru doped NaNi0.5Mn0.3Ti0.2O2 cathode material with improved electrochemical performance for sodium-ion batteries
    Leng, Mingzhe
    Bi, Jianqiang
    Wang, Weili
    Liu, Rui
    Xia, Chi
    IONICS, 2019, 25 (03) : 1105 - 1115
  • [8] Electrochemical Properties of Layered Na x Ni x/2Mn1-x/2O2 (0.5 ≤ x ≤ 1.1) with P3 Structure as Cathode for Sodium-Ion Batteries
    Yang, Liangtao
    Sun, Yanan
    Adelhelm, Philipp
    ENERGY TECHNOLOGY, 2022, 10 (04)
  • [9] Facile Synthesis of O3-Type NaNi0.5Mn0.5O2 Single Crystals with Improved Performance in Sodium-Ion Batteries
    Darga, Joe
    Manthiram, Arumugam
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (47) : 52729 - 52737
  • [10] The effect of Na content on the electrochemical performance of the O3-type NaxFe0.5Mn0.5O2 for sodium-ion batteries
    Zhou, Dengmei
    Huang, Wanxia
    Zhao, Fenglin
    Lv, Xiang
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (09) : 7156 - 7164