Charge-Trapping Characteristics of Al2O3/Cu/Al2O3 Nanolaminate Structures Prepared Through Atomic Layer Deposition

被引:0
作者
Lee, Byung Kook [1 ,2 ]
Kim, Seok Hwan [1 ]
Park, Bo Keun [1 ]
Lee, Sun Sook [1 ]
Hwang, Jin-Ha [2 ]
Chung, Taek-Mo [1 ]
Lee, Young Kuk [1 ]
Kim, Chang Gyoun [1 ]
An, Ki-Seok [1 ]
机构
[1] Korea Res Inst Chem Technol, Device Mat Res Ctr, Taejon 305600, South Korea
[2] Hongik Univ, Dept Mat Sci & Engn, Seoul 121791, South Korea
关键词
Atomic Layer Deposition; Nano Floating Gate Memories; Charge Trapping; NANOCRYSTALS; OXIDATION; SIO2;
D O I
10.1166/jnn.2011.4335
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The nanolaminate Al2O3/Cu/Al2O3 structures were constructed on p-type Si (001) substrates using atomic layer deposition (ALD) process with the aim to fabricating nonvolatile charge-trap memories. Low temperature Cu thin layers were deposited through plasma-enhanced atomic layre depositon of Cu aminoalkoxide (Cu(dmamb)(2)) combined with hydrogen plasma and Al2O3 layers were prepared by thermal atomic layer deposition of trimethylaluminum (TMA) combined with H2O. Nonvolatile features were confirmed using capacitance voltage (C-V) measurements. The copper film functions as a charge-trapping layer and the Al2O3 thin layers were employed as tunneling and control oxide layers. Line shapes and binding energies of Cu metal and the thin layer of 6 nm Cu in nanolaminate structures were observed in the X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (TEM) image. The V-FB shift width of the Al2O3 (28 nm)/Cu (6 nm)/Al2O3 (4.2 nm)/Si laminate structure is found to be 4.75 V in voltage sweeping between -10 and +10 V, leading to the trap density of 1.68 x 10(18) cm(-3).
引用
收藏
页码:5887 / 5891
页数:5
相关论文
共 24 条
  • [1] An HM, 2010, J NANOSCI NANOTECHNO, V10, P4701, DOI [10.1166/jnn.2010.17697, 10.1166/jnn.2010.1697]
  • [2] Brown W.D., 1998, Nonvolatile Semiconductor Memory Technology: A Comprehensive Guide to Understanding and to Using NVSM Devices
  • [3] High trap density and long retention time from self-assembled amorphous Si nanocluster floating gate nonvolatile memory
    Cha, Daigil
    Shin, Jung H.
    Park, Sangjin
    Lee, Eunha
    Park, Yoondong
    Park, Youngsoo
    Yoo, In-Kyeong
    Seol, Kwang Soo
    Choi, Suk-Ho
    [J]. APPLIED PHYSICS LETTERS, 2006, 89 (24)
  • [4] Study of tunneling mechanism of Au nanocrystals in HfAlO matrix as floating gate memory
    Chan, K. C.
    Lee, P. F.
    Dai, J. Y.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (22)
  • [5] Tungsten oxide/tungsten nanocrystals for nonvolatile memory devices
    Chen, C. H.
    Chang, T. C.
    Liao, I. H.
    Xi, P. B.
    Hsieh, Joe
    Chen, Jason
    Huang, Tensor
    Sze, S. M.
    Chen, U. S.
    Chen, J. R.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (01)
  • [6] Self-assembly of Al2O3 nanodots on SiO2 using two-step controlled annealing technique for long retention nonvolatile memories -: art. no. 073114
    Chen, JH
    Yoo, WJ
    Chan, DSH
    Tang, LJ
    [J]. APPLIED PHYSICS LETTERS, 2005, 86 (07) : 1 - 3
  • [7] Multistacked Al2O3/HfO2/SiO2 tunnel layer for high-density nonvolatile memory application
    Chen, Wei
    Liu, Wen-Jun
    Zhang, Min
    Ding, Shi-Jin
    Zhang, David Wei
    Li, Ming-Fu
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (02)
  • [8] CHO MK, 2000, IEEE ELECTR DEVICE L, V21, P8
  • [9] Formation of TaN nanocrystals embedded in silicon nitride by phase separation methods for nonvolatile memory applications
    Choi, Hyejung
    Jung, Seung-Jae
    Park, Hokyung
    Lee, Joon-Myung
    Kwon, Moonjae
    Chang, Man
    Hasan, Musarrat
    Choi, Sangmoo
    Hwang, Hyunsang
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (05)
  • [10] Nanotechnology enables a new memory growth model
    Hwang, CG
    [J]. PROCEEDINGS OF THE IEEE, 2003, 91 (11) : 1765 - 1771