Early Prediction of Remaining Useful Life for Grid-Scale Battery Energy Storage System

被引:6
作者
Lin, Da [1 ]
Zhang, Yang [2 ]
Zhao, Xianhe [3 ]
Tang, Yajie [1 ]
Dai, Zheren [2 ]
Li, Zhihao [1 ]
Wang, Xiangjin [2 ]
Geng, Guangchao [3 ]
机构
[1] State Grid Zhejiang Elect Power Res Inst, 1 Huadiannong St, Hangzhou 310014, Zhejiang, Peoples R China
[2] State Grid Zhejiang Elect Power Co Ltd, 8 Huanglong Rd, Hangzhou 310013, Zhejiang, Peoples R China
[3] Zhejiang Univ, Coll Elect Engn, Hangzhou 310027, Zhejiang, Peoples R China
关键词
ONLINE STATE; HEALTH; REGULARIZATION; CELLS;
D O I
10.1061/(ASCE)EY.1943-7897.0000800
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The grid-scale battery energy storage system (BESS) plays an important role in improving power system operation performance and promoting renewable energy integration. However, operation safety and system maintenance have been considered as significant challenges for grid-scale use of BESS. Remaining useful life (RUL) is a useful indicator of the health condition of batteries but it is especially difficult to estimate because it is dependent on many monitoring quantities from BESS. This work presents a data-driven approach that is able to fully utilize BESS monitoring data obtained from the battery management system (BMS) in order to provide an accurate and robust estimation of RUL for each individual battery cells inside a BESS. Based on raw data from historical cycling records, the proposed approach employs elastic net regression to extract characteristic features from both primary and secondary data; a back-propagation neural network based model is then established to build the relationship of refined features and the resultant RUL. The effectiveness of the RUL predictor model is verified using a large-scale data set from real-world lithium-ion battery cells and expected to be applicable to practical grid-scale BESS. (c) 2021 American Society of Civil Engineers.
引用
收藏
页数:8
相关论文
共 29 条
[1]  
A123 Systems, 2009, HIGH POW LITH APR186
[2]  
Andoni Merlinda, 2017, CIRED - Open Access Proceedings Journal, V2017, P96, DOI 10.1049/oap-cired.2017.0657
[3]   Online state of health estimation on NMC cells based on predictive analytics [J].
Berecibar, Maitane ;
Devriendt, Floris ;
Dubarry, Matthieu ;
Villarreal, Igor ;
Omar, Noshin ;
Verbeke, Wouter ;
Van Mierlo, Joeri .
JOURNAL OF POWER SOURCES, 2016, 320 :239-250
[4]   An improved battery characterization method using a two-pulse load test [J].
Coleman, Martin ;
Hurley, William Gerard ;
Lee, Chin Kwan .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2008, 23 (02) :708-713
[5]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[6]   Lithium-Ion Batteries Health Prognosis Considering Aging Conditions [J].
El Mejdoubi, Asmae ;
Chaoui, Hicham ;
Gualous, Hamid ;
Van den Bossche, Peter ;
Omar, Noshin ;
Van Mierlo, Joeri .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2019, 34 (07) :6834-6844
[7]   Optimal Energy Management in Smart Grids Including Different Types of Aggregated Flexible Loads [J].
El-Zonkoly, Amany M. .
JOURNAL OF ENERGY ENGINEERING, 2019, 145 (05)
[8]   Regularization Paths for Generalized Linear Models via Coordinate Descent [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Rob .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01) :1-22
[9]  
Friedman Jerome., 2016, The Elements of Statistical Learning, V2nd
[10]   Study of the Characteristics of Battery Packs in Electric Vehicles With Parallel-Connected Lithium-Ion Battery Cells [J].
Gong, Xianzhi ;
Xiong, Rui ;
Mi, Chunting Chris .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2015, 51 (02) :1872-1879