In vivo and 3D visualization of coronary artery development by optical coherence tomography

被引:0
|
作者
Thrane, L. [1 ]
Norozi, K. [2 ]
Maenner, J. [3 ]
Pedersen, F. [1 ]
Mottl-Link, S. [4 ]
Larsen, H. Engelbrecht [1 ]
Andersen, P. E. [1 ]
Wessel, A. [2 ]
Yelbuz, T. M. [2 ]
机构
[1] Tech Univ Denmark, Riso Natl Lab, Opt & Plasma Res Dept, POB 49, DK-4000 Roskilde, Denmark
[2] Hannover Med Sch, Dept Pediat Cardiol & Intens Care Med, D-30623 Hannover, Germany
[3] Georg August Univ Gottingen, Dept Anat & Embryol, D-37075 Gottingen, Germany
[4] German Canc Res Ctr, Dept Med & Biol Informat, D-69121 Heidelberg, Germany
来源
OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE TECHNIQUES III | 2007年 / 6627卷
关键词
optical coherence tomography; optical Doppler tomography; coronary artery development;
D O I
10.1117/12.727823
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
One of the most critical but poorly understood processes during cardiovascular development is the establishment of a functioning coronary artery (CA) system. Due to the lack of suitable imaging technologies, it is currently impossible to visualize this complex dynamic process on living human embryos. Furthermore, due to methodological limitations, this intriguing process has not been unveiled in living animal embryos, too. We present here, to the best of our knowledge, the first in vivo images of developing CAs obtained from the hearts of chick embryos grown in shell-less cultures. The in vivo images were generated by optical coherence tomography (OCT). The OCT system used in this study is a mobile fiber-based time-domain real-time OCT system operating with a center wavelength of 1330 nm, an A-scan rate of 4 kHz, and a typical frame rate of 8 frames/s. The axial resolution is 17 mu m (in tissue), and the lateral resolution is 30 mu m. The OCT system is optimized for in vivo chick heart visualization and enables OCT movie recording with 8 frames/s, full-automatic 3D OCT scanning, and blood flow visualization, i.e., Doppler OCT imaging. Using this OCT system, we generated in vivo OCT recordings of chick embryo hearts to study the process of connection of the future right coronary artery (RCA) to the aorta. Recordings were made at three critical stages during development: day 8 (no clear connection yet), day 9 (established connection of RCA with the aorta with clear blood flow) and day 10 (further remodeling of the established RCA).
引用
收藏
页数:5
相关论文
共 50 条
  • [1] 3D visualization of tissue microstructures using optical coherence tomography needle probes
    Kirk, Rodney W.
    McLaughlin, Robert A.
    Quirk, Bryden C.
    Curatolo, Andrea
    Sampson, David D.
    21ST INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS, 2011, 7753
  • [2] Optical Coherence Tomography for Patient-specific 3D Artery Reconstruction and Evaluation of Wall Shear Stress in a Left Circumflex Coronary Artery
    Ellwein L.M.
    Otake H.
    Gundert T.J.
    Koo B.-K.
    Shinke T.
    Honda Y.
    Shite J.
    LaDisa Jr. J.F.
    Cardiovascular Engineering and Technology, 2011, 2 (3) : 212 - 227
  • [3] In Vivo optical coherence tomography visualization of intraplaque neovascularization at the site of coronary vasospasm: a case report
    Kenichi Tsujita
    Koichi Kaikita
    Satoshi Araki
    Toshihiro Yamada
    Suguru Nagamatsu
    Kenshi Yamanaga
    Kenji Sakamoto
    Sunao Kojima
    Seiji Hokimoto
    Hisao Ogawa
    BMC Cardiovascular Disorders, 16
  • [4] In Vivo optical coherence tomography visualization of intraplaque neovascularization at the site of coronary vasospasm: a case report
    Tsujita, Kenichi
    Kaikita, Koichi
    Araki, Satoshi
    Yamada, Toshihiro
    Nagamatsu, Suguru
    Yamanaga, Kenshi
    Sakamoto, Kenji
    Kojima, Sunao
    Hokimoto, Seiji
    Ogawa, Hisao
    BMC CARDIOVASCULAR DISORDERS, 2016, 16
  • [5] Durable ex vivo mouse retina 3D tissue models for optical coherence tomography
    Barroso, Alvaro
    Heiduschka, Peter
    Nettels-Hackert, Gerburg
    Ketelhut, Steffi
    del Amor, Rocio
    Garcia-Torres, Fernando
    Morales-Martinez, Sandra
    Naranjo, Valery
    Kemper, Bjoern
    Schnekenburger, Juergen
    LABEL-FREE BIOMEDICAL IMAGING AND SENSING, LBIS 2024, 2024, 12854
  • [6] Visualization of 3D Cell Migration using High Speed Ultrahigh Resolution Optical Coherence Tomography
    Rey, Sara
    Harwood, Adrian
    Povazay, Boris
    Hofer, Bernd
    Unterhuber, Angelika
    Hermann, Boris
    Drexler, Wolfgang
    OPTICS IN TISSUE ENGINEERING AND REGENERATIVE MEDICINE III, 2009, 7179
  • [7] Optical coherence tomography for evaluation of coronary stents in vivo
    Nammas, Wail
    Ligthart, Jurgen M. R.
    Karanasos, Antonios
    Witberg, Karen T.
    Regar, Evelyn
    EXPERT REVIEW OF CARDIOVASCULAR THERAPY, 2013, 11 (05) : 577 - 588
  • [8] Optical coherence tomography: The face of coronary artery spasm
    Andreou, Andreas Yiangou
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2012, 157 (01) : 151 - 152
  • [9] Durable coronary artery phantoms for optical coherence tomography
    Bisaillon, Charles-Etienne
    Lanthier, Marie-Michele
    Dufour, Marc L.
    Lamouche, Guy
    PHOTONIC THERAPEUTICS AND DIAGNOSTICS V, 2009, 7161
  • [10] Rapid automated lumen segmentation of coronary optical coherence tomography images followed by 3D reconstruction of coronary arteries
    Wu, Wei
    Roby, Merjulah
    Banga, Akshat
    Oguz, Usama M.
    Gadamidi, Vinay Kumar
    Hasini Vasa, Charu
    Zhao, Shijia
    Dasari, Vineeth S.
    Thota, Anjani Kumar
    Tanweer, Sartaj
    Lee, Changkye
    Kassab, Ghassan S.
    Chatzizisis, Yiannis S.
    JOURNAL OF MEDICAL IMAGING, 2024, 11 (01)