Neuroprotective Effect of Danhong Injection on Cerebral Ischemia-Reperfusion Injury in Rats by Activation of the PI3K-Akt Pathway

被引:96
|
作者
Feng, Chen [1 ]
Wan, Haofang [2 ]
Zhang, Yangyang [3 ]
Yu, Li [3 ]
Shao, Chongyu [3 ]
He, Yu [4 ]
Wan, Haitong [3 ]
Jin, Weifeng [4 ]
机构
[1] Zhejiang Chinese Med Univ, Clin Med Coll 2, Hangzhou, Peoples R China
[2] Zhejiang Chinese Med Univ, Acad Chinese Med Sci, Hangzhou, Peoples R China
[3] Zhejiang Chinese Med Univ, Coll Life Sci, Hangzhou, Peoples R China
[4] Zhejiang Chinese Med Univ, Coll Pharmaceut Sci, Hangzhou, Peoples R China
来源
FRONTIERS IN PHARMACOLOGY | 2020年 / 11卷
基金
中国国家自然科学基金;
关键词
Danhong injection; neuroprotection; apoptosis; ischemia-reperfusion; PI3K-Akt pathway; SALVIAE MILTIORRHIZAE; ARTERY OCCLUSION; CELL-SURVIVAL; CYTOCHROME-C; BRAIN; APOPTOSIS; AKT; MITOCHONDRIA; DEATH; EXPRESSION;
D O I
10.3389/fphar.2020.00298
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Many traditional Chinese medicines, including Danhong injection (DHI), can be used to treat cerebral ischemia-reperfusion injury and have neuroprotective effects on the brain; however, few studies have explored the mechanism by which this effect is generated. In this study, we investigated the neuroprotective effect of DHI against cerebral ischemia-reperfusion injury mediated via the PI3K-Akt signaling pathway. After establishing the model of middle cerebral artery occlusion (MCAO), 60 male Sprague-Dawley rats were allocated to six groups as follows: sham, MCAO, DHI (MCAO + DHI), LY294002 (MCAO + LY294002 [PI3K-Akt pathway specific inhibitor]), DHI + LY294002 (MCAO + DHI + LY294002), and NMDP + LY294002 (MCAO + NMDP [nimodipine] + LY294002). Hematoxylin and eosin (HE) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining were used to evaluate the pathological changes of brain tissue and the degree of neuronal apoptosis. Real-time quantitative polymerase chain reaction (qRT-PCR), western blot analysis and enzyme-linked immunosorbent assays were used to measure the expression of Bad, Bax, Bcl-2, Bim, P53, MDM2, Akt, PI3K, p-Akt, p-PI3K, and Cyt-C. Compared with the MCAO group, brain tissue cell apoptosis was significantly reduced in the DHI group, and the brain function score was significantly improved. In addition, the expression of pro-apoptotic factors (Bad, Bax, and Bim) was significantly downregulated in the DHI group, while expression of the anti-apoptotic factor Bcl-2 was significantly upregulated, and expression of the apoptotic gene p53 was also significantly attenuated. Moreover, this neuroprotective effect was attenuated by the PI3K-Akt signaling pathway inhibitor (LY294002). Thus, our results confirmed the neuroprotective effects of DHI in rats with ischemia-reperfusion injury and indicate that these effects on the brain are partly generated by activation of the PI3K-Akt signaling pathway.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Neuroprotective effects of curcumin against rats with focal cerebral ischemia-reperfusion injury
    Xu, Lu
    Ding, Ling
    Su, Yuanqi
    Shao, Ruyue
    Liu, Jie
    Huang, Yan
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2019, 43 (04) : 1879 - 1887
  • [32] Neuroprotective effect of Spirulina in cerebral ischemia-reperfusion injury in rats
    Thaakur, Santhrani
    Sravanthi, Ravi
    JOURNAL OF NEURAL TRANSMISSION, 2010, 117 (09) : 1083 - 1091
  • [33] A preliminary report: genistein attenuates cerebral ischemia injury in ovariectomized rats via regulation of the PI3K-Akt-mTOR pathway
    Lu, Li-yan
    Liu, Yan
    Gong, Yu-feng
    Zheng, Xiu-ying
    GENERAL PHYSIOLOGY AND BIOPHYSICS, 2019, 38 (05) : 389 - 397
  • [34] Neuroprotective Effect of Corosolic Acid Against Cerebral Ischemia-Reperfusion Injury in Experimental Rats
    Zhang, Lei
    Sui, Songtao
    Wang, Si
    Sun, Jinbo
    JOURNAL OF OLEO SCIENCE, 2022, 71 (10) : 1501 - 1510
  • [35] Activation of the PI3K-AKT Pathway by Old World Alphaviruses
    Van Huizen, Eline
    McInerney, Gerald M.
    CELLS, 2020, 9 (04)
  • [36] Glutamine protects myocardial ischemia-reperfusion injury in rats through the PI3K/Akt signaling pathway
    Cui, Z-H
    Zhang, X-J
    Shang, H-Q
    Wang, X.
    Rong, D.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2020, 24 (01) : 444 - 451
  • [37] TIGAR Ameliorates Pulmonary Ischemia-Reperfusion Injury by Activating PI3K/Akt Signaling Pathway
    Xu, Aiping
    Xia, Xiuli
    Xu, Ting
    Liu, Ruxia
    JOURNAL OF BIOLOGICAL REGULATORS AND HOMEOSTATIC AGENTS, 2023, 37 (04) : 2031 - 2042
  • [38] Astaxanthin alleviates spinal cord ischemia-reperfusion injury via activation of PI3K/Akt/GSK-3β pathway in rats
    Jian Fu
    Haibin Sun
    Haofei Wei
    Mingjie Dong
    Yongzhe Zhang
    Wei Xu
    Yanwei Fang
    Jianhui Zhao
    Journal of Orthopaedic Surgery and Research, 15
  • [39] The role of phosphoinositide-3-kinase/Akt pathway in propofol-induced postconditioning against focal cerebral ischemia-reperfusion injury in rats
    Wang, Hai-yun
    Wang, Guo-lin
    Yu, Yong-hao
    Wang, Ying
    BRAIN RESEARCH, 2009, 1297 : 177 - 184
  • [40] Gap junctional intercellular communication dysfunction mediates the cognitive impairment induced by cerebral ischemia-reperfusion injury: PI3K/Akt pathway involved
    Zhou, Shujun
    Fang, Zheng
    Wang, Gui
    Wu, Song
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2017, 9 (12): : 5442 - 5451