共 50 条
Demonstration of high performance in a perovskite oxide supported solid oxide fuel cell based on La and Ca co-doped SrTiO3
被引:50
作者:
Lu, Lanying
[1
]
Ni, Chengsheng
[1
]
Cassidy, Mark
[1
]
Irvine, John T. S.
[1
]
机构:
[1] Univ St Andrews, Sch Chem, St Andrews KY16 9ST, Fife, Scotland
基金:
英国工程与自然科学研究理事会;
关键词:
SOFC ANODES;
STRONTIUM-TITANATE;
TOLERANT ANODE;
PART I;
YSZ;
TEMPERATURE;
ELECTRODES;
LA0.2SR0.7TIO3;
INFILTRATION;
DEPENDENCE;
D O I:
10.1039/c6ta04074h
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Perovskite electrodes have been considered as an alternative to Ni-YSZ cermet-based anodes as they afford better tolerance towards coking and impurities and due to redox stability can allow very high levels of fuel utilisation. Unfortunately performance levels have rarely been sufficient, especially for a second generation anode supported concept. A-site deficient lanthanum and calcium co-doped SrTiO3, La0.2Sr0.25Ca0.45TiO3 (LSCTA-) shows promising thermal, mechanical and electrical properties and has been investigated in this study as a potential anode support material for SOFCs. Flat multilayer ceramics cells were fabricated by aqueous tape casting and co-sintering, comprising a 450 mu m thick porous LSCTA- scaffold support, a dense YSZ electrolyte and a thin layer of La0.8Sr0.2CoO3-delta (LSC)-La0.8Sr0.2FeO3-delta (LSF)-YSZ cathode. Impregnation of a small content of Ni significantly enhanced fuel cell performance over naked LSCTA-. Use of ceria as a co-catalyst was found to improve the microstructure and stability of impregnated Ni and this in combination with the catalytic enhancement from ceria significantly improved performance over Ni impregnation alone. With addition of CeO2 and Ni to a titanate scaffold anode that had been pre-reduced at 1000 degrees C, a maximum powder density of 0.96 W cm(-2) can be achieved at 800 degrees C using humidified hydrogen as fuel. The encouraging results show that an oxide anode material, LSCTA- can be used as anode support with YSZ electrolyte heralding a new option for SOFC development.
引用
收藏
页码:11708 / 11718
页数:11
相关论文