Compressive Strength of Sandy Soils Stabilized with Alkali-Activated Volcanic Ash and Slag

被引:41
作者
Shariatmadari, Nader [1 ]
Hasanzadehshooiili, Hadi [1 ]
Ghadir, Pooria [1 ]
Saeidi, Fatemeh [1 ]
Moharami, Farshad [1 ]
机构
[1] Iran Univ Sci & Technol, Sch Civil Engn, Dept Geotechn, Tehran 1684613114, Iran
关键词
Unconfined compressive strength (UCS); Sand; Geopolymer; Volcanic ash (VA); Ground granulated blast furnace slag (GGBFS); Sodium hydroxide; Sodium silicate; Artificial neural network (ANN); Evolutionary polynomial regression (EPR); Sensitivity analysis; GEOTECHNICAL PROPERTIES; FLY-ASH; LABORATORY EVALUATION; PORTLAND-CEMENT; NEURAL-NETWORK; BOTTOM ASH; PREDICTION; GEOPOLYMER; BEHAVIOR; LIME;
D O I
10.1061/(ASCE)MT.1943-5533.0003845
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In recent years, compared with the traditional portland cement, environmentally friendly geopolymers have gained more attention as construction materials. This paper considered volcanic ash (VA) and ground granulated blast furnace slag (GGBFS) in different percentages (0%, 3%, 7%, and 10%) as a replacement for the conventionally used portland cement to stabilize sandy soils. NaOH and Na2SiO3 in different concentrations (4, 8, and 12 M) and alkali to binder ratios (1, 1.5, 2, and 3) were used as alkali activator solutions to build new geopolymers. Samples were cured at both ambient and oven temperatures and for 1, 7, and 28 days. Unconfined compressive strength (UCS) of samples then was evaluated. Two predictive approaches, artificial neural network (ANN) modeling and the evolutionary polynomial regression technique (EPR), were applied to model UCS of geopolymerized sand samples. Regarding the high value of the coefficient of determination of the proposed ANN, 97%, and acceptable prediction errors, RMS error of 0.0439 and MAE of 0.0336, an 8-5-10-1 ANN was introduced as a more accurate tool for the prediction of UCS. Next, three-dimensional parametrical studies investigated the effects of simultaneous changes in alkali solution, binder, and curing condition parameters on UCS values of geopolymerized samples. Sensitivity analysis based on the cosine amplitude method introduced the Si/Al ratio as the parameter most affecting and VA content as the parameter least affecting the compressive strength of samples. Results were analyzed further using pH and electrical conductivity tests and interpreted based on microstructural investigations using scanning electron microscopy (SEM) images and X-ray diffraction analysis. (C) 2021 American Society of Civil Engineers.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Mechanical Strength of Saline Sandy Soils Stabilized with Alkali-Activated Cements
    Razeghi, Hamid Reza
    Ghadir, Pooria
    Javadi, Akbar A.
    SUSTAINABILITY, 2022, 14 (20)
  • [2] Clayey soil stabilization using alkali-activated volcanic ash and slag
    Miraki, Hania
    Shariatmadari, Nader
    Ghadir, Pooria
    Jahandari, Soheil
    Tao, Zhong
    Siddique, Rafat
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2022, 14 (02) : 576 - 591
  • [3] Compressive strength development and shrinkage of alkali-activated fly ash-slag blends associated with efflorescence
    Yao, Xiao
    Yang, Tao
    Zhang, Zuhua
    MATERIALS AND STRUCTURES, 2016, 49 (07) : 2907 - 2918
  • [4] Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature
    Pan, Z.
    Tao, Z.
    Cao, Y. F.
    Wuhrer, R.
    Murphy, T.
    CEMENT & CONCRETE COMPOSITES, 2018, 86 : 9 - 18
  • [5] Flow and Compressive Strength of Alkali-Activated Mortars
    Yang, Keun-Hyeok
    Song, Jin-Kyu
    Lee, Kang-Seok
    Ashour, Ashraf F.
    ACI MATERIALS JOURNAL, 2009, 106 (01) : 50 - 58
  • [6] Compressive strength development and shrinkage of alkali-activated fly ash–slag blends associated with efflorescence
    Xiao Yao
    Tao Yang
    Zuhua Zhang
    Materials and Structures, 2016, 49 : 2907 - 2918
  • [7] Relationship between Microscopic Structures and Compressive Strength of Alkali-Activated Fly Ash Mortar
    Kang, Hyun-Jin
    Ryu, Gum-Sung
    Koh, Gyung-Taek
    Kang, Su-Tae
    Park, Jung-Jun
    ADVANCES IN FRACTURE AND DAMAGE MECHANICS IX, 2011, 452-453 : 737 - 740
  • [8] Influence of Granulated Silico-Manganese Slag on Compressive Strength and Microstructure of Ambient Cured Alkali-Activated Fly Ash Binder
    Nath, S. K.
    Kumar, Sanjay
    WASTE AND BIOMASS VALORIZATION, 2019, 10 (07) : 2045 - 2055
  • [9] Effectiveness of alkali-activated slag as alternative binder on workability and early age compressive strength of cemented paste backfills
    Jiang, Haiqiang
    Qi, Zhaojun
    Yilmaz, Erol
    Han, Jing
    Qiu, Jingping
    Dong, Chunlei
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 218 : 689 - 700
  • [10] Design of Alkali-Activated Slag-Fly Ash Concrete Mixtures Using Machine Learning
    Gunasekera, C.
    Lokuge, W.
    Keskic, M.
    Raj, N.
    Law, D. W.
    Setunge, S.
    ACI MATERIALS JOURNAL, 2020, 117 (05) : 263 - 278