A GLOBAL OPTIMAL CONVERGENCE RATE IN A MODEL FOR THE DIFFUSION TENSOR IMAGING

被引:5
作者
Sakhanenko, L. [1 ]
机构
[1] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
关键词
integral curve; optimal rate of convergence; diffusion tensor imaging;
D O I
10.1137/S0040585X97984619
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In their recent work Koltchinskii, Sakhanenko, and Cai [Ann. Statist., 35 (2007), pp. 1576-1607] proposed and studied estimators for integral curves based on noisy data of the corresponding gradient vector field. That estimation problem was motivated by diffusion tensor imaging, a popular brain imaging technique. Recently Sakhanenko [Theory Probab. Appl., 54 (2009), pp. 166-177] showed that those estimates have pointwise optimal convergence rate in a minimax sense. In this work we show that these estimators are convergence rate-optimal in the minimax sense with respect to the integral L-p-norm, 1 <= p <= infinity. This result closes up a gap in the research on the optimal convergence rates for these estimators.
引用
收藏
页码:77 / 90
页数:14
相关论文
共 50 条
  • [21] Diffusion tensor imaging correlates with cytopathology in a rat model of neonatal hydrocephalus
    Yuan W.
    Deren K.E.
    McAllister II J.P.
    Holland S.K.
    Lindquist D.M.
    Cancelliere A.
    Mason M.
    Shereen A.
    Hertzler D.A.
    Altaye M.
    Mangano F.T.
    Cerebrospinal Fluid Research, 7 (1):
  • [22] Dynamic diffusion tensor imaging of spinal cord contusion: A canine model
    Liu, Changbin
    Yang, Degang
    Li, Jianjun
    Li, Dapeng
    Yang, Mingliang
    Sun, Wei
    Meng, Qianru
    Zhang, Wenhao
    Cai, Chang
    Du, Liangjie
    Li, Jun
    Gao, Feng
    Gu, Rui
    Feng, Yutong
    Dong, Xuechao
    Miao, Qi
    Yang, Xinghua
    Zuo, Zhentao
    JOURNAL OF NEUROSCIENCE RESEARCH, 2018, 96 (06) : 1093 - 1103
  • [23] Basic Concepts of MR Imaging, Diffusion MR Imaging, and Diffusion Tensor Imaging
    de Figueiredo, Eduardo H. M. S. G.
    Borgonovi, Arthur F. N. G.
    Doring, Thomas M.
    MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2011, 19 (01) : 1 - +
  • [24] Error propagation framework for diffusion tensor imaging via diffusion tensor representations
    Koay, Cheng Guan
    Chang, Lin-Ching
    Pierpaoli, Carlo
    Basser, Peter J.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2007, 26 (08) : 1017 - 1034
  • [25] Diffusion weighted imaging and diffusion tensor imaging in the evaluation of transplanted kidneys
    Palmucci, Stefano
    Cappello, Giuseppina
    Attina, Giancarlo
    Foti, Pietro Valerio
    Siverino, Rita Olivia Anna
    Roccasalva, Federica
    Piccoli, Marina
    Sinagra, Nunziata
    Milone, Pietro
    Veroux, Massimiliano
    Ettorre, Giovanni Carlo
    EUROPEAN JOURNAL OF RADIOLOGY OPEN, 2015, 2 : 71 - 80
  • [26] Diffusion tensor imaging of subependymal heterotopia
    Briganti, C.
    Navarra, R.
    Celentano, C.
    Matarrelli, B.
    Tartaro, A.
    Romani, G. L.
    Caulo, M.
    EPILEPSY RESEARCH, 2012, 98 (2-3) : 251 - 254
  • [27] Diffusion tensor imaging of diabetic amyotrophy
    Rocco Hlis
    Feng Poh
    Yin Xi
    Avneesh Chhabra
    Skeletal Radiology, 2019, 48 : 1705 - 1713
  • [28] Serial Diffusion Tensor Imaging and Rate of Ventricular Blood Clearance in Patients with Intraventricular Hemorrhage
    Vyas, Vedang
    Savitz, Sean I.
    Boren, Seth B.
    Becerril-Gaitan, Andrea
    Hasan, Khader
    Suchting, Robert
    Dedios, Constanza
    Solberg, Spencer
    Chen, Ching-Jen
    Brown, Robert J.
    Sitton, Clark W.
    Grotta, James
    Aronowski, Jaroslaw
    Gonzales, Nicole
    Haque, Muhammad E.
    NEUROCRITICAL CARE, 2025, 42 (01) : 48 - 58
  • [29] A method for calibrating diffusion gradients in diffusion tensor imaging
    Wu, Yu-Chien
    Alexander, Andrew L.
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2007, 31 (06) : 984 - 993
  • [30] Application of diffusion tensor imaging in neurosurgery
    Saur, Ralf
    Gharabaghi, Alireza
    Erb, Michael
    ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2007, 17 (04): : 258 - 265