Identification of active signaling pathways by integrating gene expression and protein interaction data

被引:32
作者
Kabir, Md Humayun [1 ,2 ,3 ]
Patrick, Ralph [2 ,4 ,5 ]
Ho, Joshua W. K. [2 ,4 ,6 ]
O'Connor, Michael D. [1 ,7 ]
机构
[1] Western Sydney Univ, Sch Med, Campbelltown, NSW, Australia
[2] Victor Chang Cardiac Res Inst, Darlinghurst, NSW, Australia
[3] Univ Rajshahi, Dept Comp Sci & Engn, Rajshahi, Bangladesh
[4] Univ New South Wales, St Vincents Clin Sch, Sydney, NSW, Australia
[5] Univ Melbourne, Melbourne Brain Ctr, Stem Cells Australia, Parkville, Vic 3010, Australia
[6] Univ Hong Kong, Sch Biomed Sci, Li Ka Shing Fac Med, Pokfulam, Hong Kong, Peoples R China
[7] Western Sydney Univ, Mol Med Res Grp, Campbelltown, NSW, Australia
基金
英国医学研究理事会;
关键词
Signaling pathway; Gene expression; Protein-protein interaction; Dental epithelial cells; Lens epithelial cells; Lens fiber cells; Pluripotent stem cells; ROR1(+) cells; INTERACTION NETWORKS; RECONSTRUCTION; CELLS;
D O I
10.1186/s12918-018-0655-x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
BackgroundSignaling pathways are the key biological mechanisms that transduce extracellular signals to affect transcription factor mediated gene regulation within cells. A number of computational methods have been developed to identify the topological structure of a specific signaling pathway using protein-protein interaction data, but they are not designed for identifying active signaling pathways in an unbiased manner. On the other hand, there are statistical methods based on gene sets or pathway data that can prioritize likely active signaling pathways, but they do not make full use of active pathway structure that link receptor, kinases and downstream transcription factors.ResultsHere, we present a method to simultaneously predict the set of active signaling pathways, together with their pathway structure, by integrating protein-protein interaction network and gene expression data. We evaluated the capacity for our method to predict active signaling pathways for dental epithelial cells, ocular lens epithelial cells, human pluripotent stem cell-derived lens epithelial cells, and lens fiber cells. This analysis showed our approach could identify all the known active pathways that are associated with tooth formation and lens development.ConclusionsThe results suggest that SPAGI can be a useful approach to identify the potential active signaling pathways given a gene expression profile. Our method is implemented as an open source R package, available via https://github.com/VCCRI/SPAGI/.
引用
收藏
页数:11
相关论文
共 38 条
[1]   MyProteinNet: build up-to-date protein interaction networks for organisms, tissues and user-defined contexts [J].
Basha, Omer ;
Flom, Dvir ;
Barshir, Ruth ;
Smoly, Ilan ;
Tirman, Shoval ;
Yeger-Lotem, Esti .
NUCLEIC ACIDS RESEARCH, 2015, 43 (W1) :W258-W263
[2]   Automated identification of pathways from quantitative genetic interaction data [J].
Battle, Alexis ;
Jonikas, Martin C. ;
Walter, Peter ;
Weissman, Jonathan S. ;
Koller, Daphne .
MOLECULAR SYSTEMS BIOLOGY, 2010, 6
[3]   PathFinder: mining signal transduction pathway segments from protein-protein interaction networks [J].
Bebek, Gurkan ;
Yang, Jiong .
BMC BIOINFORMATICS, 2007, 8 (1)
[4]   Signaling and Gene Regulatory Networks in Mammalian Lens Development [J].
Cvekl, Ales ;
Zhang, Xin .
TRENDS IN GENETICS, 2017, 33 (10) :677-702
[5]   An integrated encyclopedia of DNA elements in the human genome [J].
Dunham, Ian ;
Kundaje, Anshul ;
Aldred, Shelley F. ;
Collins, Patrick J. ;
Davis, CarrieA. ;
Doyle, Francis ;
Epstein, Charles B. ;
Frietze, Seth ;
Harrow, Jennifer ;
Kaul, Rajinder ;
Khatun, Jainab ;
Lajoie, Bryan R. ;
Landt, Stephen G. ;
Lee, Bum-Kyu ;
Pauli, Florencia ;
Rosenbloom, Kate R. ;
Sabo, Peter ;
Safi, Alexias ;
Sanyal, Amartya ;
Shoresh, Noam ;
Simon, Jeremy M. ;
Song, Lingyun ;
Trinklein, Nathan D. ;
Altshuler, Robert C. ;
Birney, Ewan ;
Brown, James B. ;
Cheng, Chao ;
Djebali, Sarah ;
Dong, Xianjun ;
Dunham, Ian ;
Ernst, Jason ;
Furey, Terrence S. ;
Gerstein, Mark ;
Giardine, Belinda ;
Greven, Melissa ;
Hardison, Ross C. ;
Harris, Robert S. ;
Herrero, Javier ;
Hoffman, Michael M. ;
Iyer, Sowmya ;
Kellis, Manolis ;
Khatun, Jainab ;
Kheradpour, Pouya ;
Kundaje, Anshul ;
Lassmann, Timo ;
Li, Qunhua ;
Lin, Xinying ;
Marinov, Georgi K. ;
Merkel, Angelika ;
Mortazavi, Ali .
NATURE, 2012, 489 (7414) :57-74
[6]   Bayesian network model for identification of pathways by integrating protein interaction with genetic interaction data [J].
Fu, Changhe ;
Deng, Su ;
Jin, Guangxu ;
Wang, Xinxin ;
Yu, Zu-Guo .
BMC SYSTEMS BIOLOGY, 2017, 11
[7]  
Gil Daniel P, 2017, F1000Res, V6, P58, DOI 10.12688/f1000research.9909.1
[8]   Discovering pathways by orienting edges in protein interaction networks [J].
Gitter, Anthony ;
Klein-Seetharaman, Judith ;
Gupta, Anupam ;
Bar-Joseph, Ziv .
NUCLEIC ACIDS RESEARCH, 2011, 39 (04) :e22
[9]  
Hoang TV, 2014, MOL VIS, V20, P1491
[10]   Signaling - 2000 and beyond [J].
Hunter, T .
CELL, 2000, 100 (01) :113-127