Neutrino luminosity of stars with different masses

被引:4
作者
Shi, Yang [1 ]
Xue, Xun [1 ,2 ]
Zhu, Chun-Hua [1 ]
Wang, Zhao-Jun [1 ]
Liu, He-Lei [1 ]
Li, Lin [1 ]
Lu, Guo-Liang [1 ]
机构
[1] Xinjiang Univ, Sch Phys & Technol, Urumqi 830046, Peoples R China
[2] East China Normal Univ, Dept Phys, Shanghai 2000062, Peoples R China
基金
中国国家自然科学基金;
关键词
stars; evolution; fundamental parameters; nuclear reactions; nucleosynthesis; abundances; STELLAR INTERIORS; REACTION-RATES; ENERGY-LOSS; BREMSSTRAHLUNG; ENHANCEMENT; EVOLUTION; SPECTRA; PAIR; AGB;
D O I
10.1088/1674-4527/20/1/5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Neutrinos play an important role in stellar evolution. They are produced by nuclear reactions or thermal processes. Using the stellar evolution code Modules for Experiments in Stellar Astrophysics (MESA), we study stellar neutrino luminosity with different masses. The neutrino luminosities of stars with different initial masses at different evolutionary stages are simulated. We find that the neutrino flux of a star with 1 M-circle dot mass at an evolutionary age of 4.61 x 10(9) yr is consistent with that of the Sun. In general, neutrinos are produced by nuclear reactions, and the neutrino luminosity of stars is about one or two magnitudes lower than the photo luminosity. However, neutrino luminosity can exceed photo luminosity during the helium flash which can occur for stars with a mass lower than 8 M-circle dot. Although the helium flash does not produce neutrinos, plasma decay, one of the thermal processes, can efficiently make neutrinos during this stage. Due to the high mass-loss rate, a star with a mass of 9 M-circle dot does not undergo the helium flash. Its neutrinos mainly originate from nuclear reactions until the end of the AGB stage. At the end of the AGB stage, its neutrino luminosity results from plasma decay which is triggered by the gravitational energy release because of the stellar core contracting.
引用
收藏
页数:8
相关论文
共 36 条
[1]   SEARCH FOR SOURCES OF HIGH-ENERGY NEUTRONS WITH FOUR YEARS OF DATA FROM THE ICETOP DETECTOR [J].
Aartsen, M. G. ;
Abraham, K. ;
Ackermann, M. ;
Adams, J. ;
Aguilar, J. A. ;
Ahlers, M. ;
Ahrens, M. ;
Altmann, D. ;
Andeen, K. ;
Anderson, T. ;
Ansseau, I. ;
Anton, G. ;
Archinger, M. ;
Arguelles, C. ;
Auffenberg, J. ;
Axani, S. ;
Bai, X. ;
Barwick, S. W. ;
Baum, V. ;
Bay, R. ;
Beatty, J. J. ;
Tjus, J. Becker ;
Becker, K. -H. ;
BenZvi, S. ;
Berghaus, P. ;
Berley, D. ;
Bernardini, E. ;
Bernhard, A. ;
Besson, D. Z. ;
Binder, G. ;
Bindig, D. ;
Bissok, M. ;
Blaufuss, E. ;
Blot, S. ;
Bohm, C. ;
Boerner, M. ;
Bos, F. ;
Bose, D. ;
Boeser, S. ;
Botner, O. ;
Braun, J. ;
Brayeur, L. ;
Bretz, H. -P. ;
Burgman, A. ;
Carver, T. ;
Casier, M. ;
Cheung, E. ;
Chirkin, D. ;
Christov, A. ;
Clark, K. .
ASTROPHYSICAL JOURNAL, 2016, 830 (02)
[2]   NUCLEAR-REACTION RATE ENHANCEMENT IN DENSE STELLAR MATTER [J].
ALASTUEY, A ;
JANCOVICI, B .
ASTROPHYSICAL JOURNAL, 1978, 226 (03) :1034-1040
[3]   Gallium solar neutrino experiments: Absorption cross sections, neutrino spectra, and predicted event rates [J].
Bahcall, JN .
PHYSICAL REVIEW C, 1997, 56 (06) :3391-3409
[4]   SOLAR MODELS, NEUTRINO EXPERIMENTS, AND HELIOSEISMOLOGY [J].
BAHCALL, JN ;
ULRICH, RK .
REVIEWS OF MODERN PHYSICS, 1988, 60 (02) :297-372
[5]  
BAHCALL JN, 2001, J HIGH ENERGY PHYS
[6]   Electron-neutrino bremsstrahlung in electro-weak theory [J].
Bhattacharyya, Indranath .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2006, 32 (11) :2167-2179
[7]  
Bionta R. M., 1987, Neutrino Masses and Neutrino Astrophysics (Including Supernova 1987a), P63
[8]  
BLOCKER T, 1995, ASTRON ASTROPHYS, V297, P727
[9]  
Cox J. P., 1968, Principles of Stellar Structure
[10]   THE JINA REACLIB DATABASE: ITS RECENT UPDATES AND IMPACT ON TYPE-I X-RAY BURSTS [J].
Cyburt, Richard H. ;
Amthor, A. Matthew ;
Ferguson, Ryan ;
Meisel, Zach ;
Smith, Karl ;
Warren, Scott ;
Heger, Alexander ;
Hoffman, R. D. ;
Rauscher, Thomas ;
Sakharuk, Alexander ;
Schatz, Hendrik ;
Thielemann, F. K. ;
Wiescher, Michael .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2010, 189 (01) :240-252