Best polynomial approximation on the unit ball

被引:2
作者
Pinar, Miguel A. [1 ]
Xu, Yuan [2 ]
机构
[1] Univ Granada, Dept Matemat Aplicada, E-18071 Granada, Spain
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
best approximation; polynomials; orthogonal polynomials; unit ball; ORTHOGONAL POLYNOMIALS; SPHERE;
D O I
10.1093/imanum/drx026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E-n (f )(mu) be the error of best approximation by polynomials of degree at most n in the space L-2 (pi(mu), B-d), where B-d is the unit ball in R-d and pi(mu)(x) = (1 -parallel to x parallel to(2))(mu) mu > -1. Our main result shows that, for s is an element of N. E-n(f)(mu) <= cn(-2s)[En-2s(Delta(s)f)(mu+2s) + E-n(Delta(s)(0)f)(mu)]. where Delta and Delta(0) are the Laplace and Laplace-Beltrami operators, respectively. We also derive a bound when the right-hand side contains odd-order derivatives.
引用
收藏
页码:1209 / 1228
页数:20
相关论文
共 12 条
  • [1] [Anonymous], 1975, AM MATH SOC C PUBLIC
  • [2] A spectral method for nonlinear elliptic equations
    Atkinson, Kendall
    Chien, David
    Hansen, Olaf
    [J]. NUMERICAL ALGORITHMS, 2017, 74 (03) : 797 - 819
  • [3] A spectral method for elliptic equations: the Neumann problem
    Atkinson, Kendall
    Hansen, Olaf
    Chien, David
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2011, 34 (03) : 295 - 317
  • [4] A spectral method for elliptic equations: the Dirichlet problem
    Atkinson, Kendall
    Chien, David
    Hansen, Olaf
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2010, 33 (02) : 169 - 189
  • [5] Dai F., 2013, Approximation theory and harmonic analysis on spheres and balls
  • [6] Moduli of smoothness and approximation on the unit sphere and the unit ball
    Dai, Feng
    Xu, Yuan
    [J]. ADVANCES IN MATHEMATICS, 2010, 224 (04) : 1233 - 1310
  • [7] SPECTRAL APPROXIMATION ON THE UNIT BALL
    Li, Huiyuan
    Xu, Yuan
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (06) : 2647 - 2675
  • [8] Weighted Sobolev orthogonal polynomials on the unit ball
    Perez, Teresa E.
    Pinar, Miguel A.
    Xu, Yuan
    [J]. JOURNAL OF APPROXIMATION THEORY, 2013, 171 : 84 - 104
  • [9] Shen J, 2011, SPR SER COMPUT MATH, V41, P47, DOI 10.1007/978-3-540-71041-7_3
  • [10] Weighted approximation of functions on the unit sphere
    Xu, Y
    [J]. CONSTRUCTIVE APPROXIMATION, 2005, 21 (01) : 1 - 28