A hybrid metaheuristic ACO-GA with an application in sports competition scheduling

被引:9
作者
Huang Guangdong [1 ]
Ping, Ling [2 ]
Qun, Wang [1 ]
机构
[1] China Univ Geosci, Beijing 100083, Peoples R China
[2] Beihang Univ, Sch Econom & Management, Beijing 100083, Peoples R China
来源
SNPD 2007: EIGHTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING, AND PARALLEL/DISTRIBUTED COMPUTING, VOL 3, PROCEEDINGS | 2007年
关键词
D O I
10.1109/SNPD.2007.402
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a hybrid metaheuristic ACO-GA for the problem of sports competition scheduling (SCS). ACO-GA combines ant colony optimization (A CO) and genetic algorithms (GA). The procedures of ACO-GA are as follows. First, GA searches the solution space and generates activity lists to provide the initial population for A CO. Next, A CO is executed, when ACO terminates, the crossover and mutation operations of GA generate new population. A CO and GA search alternately and cooperatively in the solution space. Then we test ACO-GA with Oliver30 and att48. The results indicate that ACO-GA is an effective method. Finally this paper deals with SCS using ACO-GA.
引用
收藏
页码:611 / +
页数:3
相关论文
共 50 条
[41]   A hybrid metaheuristic and simulation approach towards green project scheduling [J].
Rabet, Rahmat ;
Sajadi, Seyed Mojtaba ;
Tootoonchy, Mahshid .
ANNALS OF OPERATIONS RESEARCH, 2024,
[42]   Bus scheduling with heterogeneous fleets: Formulation and hybrid metaheuristic algorithms [J].
Sadrani, Mohammad ;
Tirachini, Alejandro ;
Antoniou, Constantinos .
EXPERT SYSTEMS WITH APPLICATIONS, 2025, 263
[43]   A hybrid metaheuristic algorithm for scheduling iron ore reclaiming in ports [J].
Jesus, Joao D. F. ;
Souza, Marcone J. F. ;
Cota, Luciano P. .
ENGINEERING OPTIMIZATION, 2024,
[44]   A Hybrid Metaheuristic Approach to a Real World Employee Scheduling Problem [J].
Reid, Kenneth N. ;
Li, Jingpeng ;
Brownlee, Alexander ;
Kern, Mathias ;
Veerapen, Nadarajen ;
Swan, Jerry ;
Owusu, Gilbert .
PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, :1311-1318
[45]   A hybrid metaheuristic with learning for a real supply chain scheduling problem [J].
Perez, Christian ;
Climent, Laura ;
Nicolo, Giancarlo ;
Arbelaez, Alejandro ;
Salido, Miguel A. .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
[46]   A hybrid metaheuristic for the resource-constrained project scheduling problem [J].
Tseng, Lin-Yu ;
Chen, Shih-Chieh .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 175 (02) :707-721
[47]   Hybrid GA-ACO Algorithm for a Model Parameters Identification Problem [J].
Fidanova, Stefka ;
Paprzycki, Marcin ;
Roeva, Olympia .
FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2014, 2014, 2 :413-420
[48]   Hybrid Algorithm for Job Scheduling: Combining the Benefits of ACO and Cuckoo Search [J].
Babukarthik, R. G. ;
Raju, R. ;
Dhavachelvan, P. .
ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY, VOL 2, 2013, 177 :479-+
[49]   A Hybrid PSO-ACO Algorithm to Facilitate Software Project Scheduling [J].
Joe, Praveen I. R. ;
Malathy, E. M. ;
Aishwarya, S. ;
Akila, R. ;
Akshaya, A. .
INTERNATIONAL JOURNAL OF E-COLLABORATION, 2022, 18 (02)
[50]   A shared-memory ACO plus GA hybrid for combinatorial optimization [J].
Acan, Adnan ;
Unveren, Ahmet .
2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, :2078-2085