Biological processes for treatment of landfill leachate

被引:116
作者
Kurniawan, Tonni Agustiono [1 ,2 ,3 ]
Lo, Waihung [1 ,2 ]
Chan, G. [1 ,2 ]
Sillanpaa, Mika E. T. [3 ,4 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, Hong Kong, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Lo Ka Chung Ctr Nat Anticanc Drug Dev, Hong Kong, Hong Kong, Peoples R China
[3] Univ Eastern Finland, Dept Environm Sci, Lab Appl Environm Chem, FI-50100 Mikkeli, Finland
[4] Lappeenranta Univ Technol, Fac Technol, FI-50100 Lappeenranta, Finland
来源
JOURNAL OF ENVIRONMENTAL MONITORING | 2010年 / 12卷 / 11期
关键词
MUNICIPAL SOLID-WASTE; SEQUENCING BATCH REACTORS; LIGHT-EMITTING-DIODES; SANITARY-LANDFILL; ANAEROBIC TREATMENT; ACTIVATED-SLUDGE; NITROGEN REMOVAL; AMMONIA REMOVAL; CONSTRUCTED WETLAND; WATER-TREATMENT;
D O I
10.1039/c0em00076k
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This review presents an overview with critical analysis of the technical applicability of biological treatments for landfill leachate. A particular focus is given to activated sludge (AS), sequencing batch reactors (SBR), aerated lagoons (AL), and upflow anaerobic sludge blankets (UASB). Their advantages and limitations in application are evaluated. Selected information is presented such as pH, hydraulic retention time (HRT), organic loading rate (OLR), characteristics of leachate and treatment performance. It is evident from the literature survey of 188 papers (1976-2010) that none of the individual biological treatments presented is universally applicable for removing recalcitrant contaminants from leachate. Among the biological treatments reviewed, AS, SBR and UASB are the most frequently applied. These treatments are effective not only to remove over 90% of COD with a concentration ranging from 3500-26 000 mg L-1, but also to achieve 80% of NH3-N removal with a concentration ranging from 100-1000 mg L-1. A combination of physico-chemical and biological treatment into an integrated process is effective for leachate treatment. Almost complete removal of COD and NH3-N was reported for combined reverse osmosis (RO) and UASB with an initial COD concentration of 35 000 mg L-1 and NH3-N concentration of 1600 mg L-1. Integrated Fenton's oxidation and AS could achieve about 98% and 99% of COD and NH3-N removal, respectively, with initial COD and NH3-N concentrations of 7000 mg L-1 and 1800 mg L-1. Overall, the selection of the most suitable treatment for leachate depends on its characteristics, technical applicability and potential constraints, effluent limit required, cost-effectiveness, regulatory requirements and long-term environmental impacts.
引用
收藏
页码:2032 / 2047
页数:16
相关论文
共 187 条
[1]   Predicted growth of world urban food waste and methane production [J].
Adhikari, Bijaya K. ;
Barrington, Suzelle ;
Martinez, Jose .
WASTE MANAGEMENT & RESEARCH, 2006, 24 (05) :421-433
[2]  
Agamuthu P., 1999, MALAYSIAN J SCI, V18, P99
[3]   Anaerobic/aerobic treatment of municipal landfill leachate in sequential two-stage up-flow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) systems [J].
Agdag, ON ;
Sponza, DT .
PROCESS BIOCHEMISTRY, 2005, 40 (02) :895-902
[4]  
Ahn YM., 2002, PROCEEDING 2 ASIA PA, P482
[5]  
Albers H., 1992, Landfilling of waste: leachate., P305
[6]   Anaerobic treatment of municipal sanitary landfill leachates: the problem of refractory and toxic components [J].
Alkalay, D ;
Guerrero, L ;
Lema, JM ;
Mendez, R ;
Chamy, R .
WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 1998, 14 (03) :309-320
[7]   Struvite precipitation from anaerobically treated municipal and landfill wastewaters [J].
Altinbas, M ;
Yangin, C ;
Ozturk, I .
WATER SCIENCE AND TECHNOLOGY, 2002, 46 (09) :271-278
[8]   Characterisation by image analysis of anaerobic sludge under shock conditions [J].
Alves, M ;
Cavaleiro, AJ ;
Ferreira, EC ;
Amaral, AL ;
Mota, M ;
da Motta, M ;
Vivier, H ;
Pons, MN .
WATER SCIENCE AND TECHNOLOGY, 2000, 41 (12) :207-214
[9]   Landfill leachates pretreatment by coagulation-flocculation [J].
Amokrane, A ;
Comel, C ;
Veron, J .
WATER RESEARCH, 1997, 31 (11) :2775-2782
[10]  
Andreottola G., 1992, Landfilling of waste: leachate., P65