A Machine Learning Approach to Classifying Self-Reported Health Status in a Cohort of Patients With Heart Disease Using Activity Tracker Data

被引:43
作者
Meng, Yiwen [1 ,2 ]
Speier, William [1 ,2 ]
Shufelt, Chrisandra [3 ]
Joung, Sandy [3 ]
Van Eyk, Jennifer [3 ]
Merz, C. Noel Bairey [3 ]
Lopez, Mayra [4 ]
Spiegel, Brennan [4 ]
Arnold, Corey W. [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Radiol, Dept Bioengn, Computat Integrated Diagnost Lab, Los Angeles, CA 90024 USA
[2] Univ Calif Los Angeles, Dept Pathol, Los Angeles, CA 90024 USA
[3] Smidt Heart Inst, Barbra Streisand Womens Heart Ctr, Los Angeles, CA 90048 USA
[4] Cedars Sinai Med Ctr, Ctr Outcomes Res & Educ, Los Angeles, CA 90048 USA
关键词
Hidden Markov models; Data models; Heart rate; Monitoring; Biomedical measurement; Machine learning; Clinical diagnosis; machine learning; patient monitoring; telemedicine; wearable sensors; PHYSICAL-ACTIVITY; VALIDATION;
D O I
10.1109/JBHI.2019.2922178
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Constructing statistical models using personal sensor data could allow for tracking health status over time, thereby enabling the possibility of early intervention. The goal of this study was to use machine learning algorithms to classify patient-reported outcomes (PROs) using activity tracker data in a cohort of patients with stable ischemic heart disease (SIHD). A population of 182 patients with SIHD were monitored over a period of 12 weeks. Each subject received a Fitbit Charge 2 device to record daily activity data, and each subject completed eight Patient-Reported Outcomes Measurement Information Systems short form at the end of each week as a self-assessment of their health status. Two models were built to classify PRO scores using activity tracker data. The first model treated each week independently, whereas the second used a hidden Markov model (HMM) to take advantage of correlations between successive weeks. Retrospective analysis compared the classification accuracy of the two models and the importance of each feature. In the independent model, a random forest classifier achieved a mean area under curve (AUC) of 0.76 for classifying the physical function PRO. The HMM model achieved significantly better AUCs for all PROs (p < 0.05) other than Fatigue and Sleep Disturbance, with a highest mean AUC of 0.79 for the physical function-short form 10a. Our study demonstrates the ability of activity tracker data to classify health status over time. These results suggest that patient outcomes can be monitored in real time using activity trackers.
引用
收藏
页码:878 / 884
页数:7
相关论文
共 50 条
[41]   Advanced Machine Learning Approaches for Classifying Parkinson's Disease Using fNIRS Data from Gait Analysis [J].
Quattrocelli, Sara ;
Merla, Arcangelo ;
Cardone, Daniela ;
Perpetuini, David .
2024 12TH E-HEALTH AND BIOENGINEERING CONFERENCE, EHB 2024, 2024, :297-300
[42]   Explainable Heart Disease Prediction Using Ensemble-Quantum Machine Learning Approach [J].
Abdulsalam, Ghada ;
Meshoul, Souham ;
Shaiba, Hadil .
INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (01) :761-779
[43]   Evaluating the Factors Associated With Increased Risk of Self-Reported Ischemic Heart Disease in Patients With Arthritis [J].
Sharma, Akash ;
Ananthan, Velmurugan Anbu ;
Yousaf, Hamza .
AMERICAN JOURNAL OF LIFESTYLE MEDICINE, 2024,
[44]   Self-reported leisure-time physical activity predicts long-term survival in patients with coronary heart disease [J].
Apullan, F. ;
Bourassa, M. ;
Tardif, J. C. ;
Fortier, A. ;
Gayda, M. ;
Nigam, A. .
CIRCULATION, 2008, 118 (12) :E234-E234
[45]   Self-reported Disability in Patients with Inflammatory Bowel Disease Largely Determined by Disease Activity and Illness Perceptions [J].
van der Have, Mike ;
Fidder, Herma H. ;
Leenders, Max ;
Kaptein, Ad A. ;
van der Valk, Mirthe E. ;
van Bodegraven, Ad A. ;
Dijkstra, Gerard ;
de Jong, Dirk J. ;
Pierik, Marieke ;
Ponsioen, Cyriel Y. ;
van der Meulen-de Jong, Andrea E. ;
van der Woude, C. Janneke ;
van de Meeberg, Paul C. ;
Romberg-Camps, Marielle J. L. ;
Clemens, Cees H. M. ;
Jansen, Jeroen M. ;
Mahmmod, Nofel ;
Bolwerk, Clemens J. M. ;
Vermeijden, J. Reinoud ;
Siersema, Peter D. ;
Oldenburg, Bas .
INFLAMMATORY BOWEL DISEASES, 2015, 21 (02) :369-377
[46]   Learning Pulse: a machine learning approach for predicting performance in self-regulated learning using multimodal data [J].
Di Mitri, Daniele ;
Scheffel, Maren ;
Drachsler, Hendrik ;
Boerner, Dirk ;
Ternier, Stefaan ;
Specht, Marcus .
SEVENTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE (LAK'17), 2017, :188-197
[47]   An explainable machine learning approach using contemporary UNOS data to identify patients who fail to bridge to heart transplantation [J].
Mardini, Mamoun T. ;
Bai, Chen ;
Bledsoe, Maisara ;
Shickel, Benjamin ;
Al-Ani, Mohammad A. .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2024, 11
[48]   Identification of Parkinson's disease using MRI and genetic data from the PPMI cohort: an improved machine learning fusion approach [J].
Yang, Yifeng ;
Hu, Liangyun ;
Chen, Yang ;
Gu, Weidong ;
Lin, Guangwu ;
Xie, Yuanzhong ;
Nie, Shengdong .
FRONTIERS IN AGING NEUROSCIENCE, 2025, 17
[49]   Predicting the risk of mortality and rehospitalization in heart failure patients: A retrospective cohort study by machine learning approach [J].
Ketabi, Marzieh ;
Andishgar, Aref ;
Fereidouni, Zhila ;
Sani, Maryam Mojarrad ;
Abdollahi, Ashkan ;
Vali, Mohebat ;
Alkamel, Abdulhakim ;
Tabrizi, Reza .
CLINICAL CARDIOLOGY, 2024, 47 (02)
[50]   Self-Reported Adherence: A Method for Evaluating Prescribed Physical Activity in Primary Health Care Patients [J].
Kallings, Lena Viktoria ;
Leijon, Matti E. ;
Kowalski, Jan ;
Hellenius, Mai-Lis ;
Stahle, Agneta .
JOURNAL OF PHYSICAL ACTIVITY & HEALTH, 2009, 6 (04) :483-492