Bratteli diagrams via the De Concini-Procesi theorem

被引:1
作者
Mundici, Daniele [1 ]
机构
[1] Univ Florence, Dept Math & Comp Sci, Florence, Italy
关键词
AF algebra; Bratteli diagram; Elliott classification; Elliott local semigroup; simplicial group; Murray-von Neumann order; AFl algebra; presentation by generators and relations; Grothendieck K-0-group; fan; De Concini-Procesi elimination theorem; desingularization; word problem; MV algebra; Schauder basis; INDUCTIVE LIMITS; AF; ALGEBRAS;
D O I
10.1142/S021919972050073X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An AF algebra A is said to be an AFl algebra if the Murray-von Neumann order of its projections is a lattice. Many, if not most, of the interesting classes of AF algebras existing in the literature are AFl algebras. We construct an algorithm which, on input a finite presentation (by generators and relations) of the Elliott semigroup of an AFl algebra A, generates a Bratteli diagram of A. We generalize this result to the case when A has an infinite presentation with a decidable word problem, in the sense of the classical theory of recursive group presentations. Applications are given to a large class of AF algebras, including almost all AF algebras whose Bratteli diagram is explicitly described in the literature. The core of our main algorithms is a combinatorial-polyhedral version of the De Concini-Procesi theorem on the elimination of points of indeterminacy in toric varieties.
引用
收藏
页数:58
相关论文
共 41 条
  • [1] Adamek J., 1994, London Math. Society Lecture Note Series189
  • [2] [Anonymous], 1988, Convex bodies and algebraic geometry, volume 15 of Results in Mathematics and Related Areas (3)]
  • [3] [Anonymous], 1996, C ALGEBRAS EXAMPLE
  • [4] [Anonymous], 1982, Lecture Notes in Mathematics
  • [5] [Anonymous], 1967, Mathematical Logic
  • [6] Behncke H., 1972, J FUNCT ANAL, V10, P330
  • [7] BLACKADAR B, 1998, MSRI PUBLICATIONS, V5
  • [8] A SIMPLE C-STAR-ALGEBRA WITH NO NONTRIVIAL PROJECTIONS
    BLACKADAR, BE
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 78 (04) : 504 - 508
  • [9] An AF algebra associated with the Farey tessellation
    Boca, Florin P.
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (05): : 975 - 1000
  • [10] BRATTELI O, 1972, T AM MATH SOC, V171, P195