Bifurcation of a predator-prey model with disease in the prey

被引:24
作者
Liu, Xuanliang [1 ]
Wang, Chaoyang [1 ]
机构
[1] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Predator-prey model; Nonlinear incidence rate; Bifurcation; Limit cycle; BEHAVIOR;
D O I
10.1007/s11071-010-9766-7
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, a predator-prey model with disease in the prey is considered. Assume that the predator eats only the infected prey, and the incidence rate is nonlinear. We study the dynamics of the model in terms of local analysis of equilibria and bifurcation analysis of a boundary equilibrium and a positive equilibrium. We discuss the Bogdanov-Takens bifurcation near the boundary equilibrium and the Hopf bifurcation near the positive equilibrium; numerical simulation results are given to support the theoretical predictions.
引用
收藏
页码:841 / 850
页数:10
相关论文
共 16 条
  • [1] ANDERSON R M, 1991
  • [2] [Anonymous], 2013, Mathematical Biology
  • [3] [Anonymous], 1998, ELEMENTS APPL BIFURC, DOI DOI 10.1007/B98848
  • [4] A predator-prey model with disease in the prey
    Chattopadhyay, J
    Arino, O
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (06) : 747 - 766
  • [5] A DISEASE TRANSMISSION MODEL IN A NONCONSTANT POPULATION
    DERRICK, WR
    VANDENDRIESSCHE, P
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 1993, 31 (05) : 495 - 512
  • [6] PREDATOR-PREY POPULATIONS WITH PARASITIC INFECTION
    HADELER, KP
    FREEDMAN, HI
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 1989, 27 (06) : 609 - 631
  • [7] Four predator prey models with infectious diseases
    Han, LT
    Ma, Z
    Hethcote, HW
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2001, 34 (7-8) : 849 - 858
  • [8] A predator-prey model with infected prey
    Hethcote, HW
    Wang, WD
    Han, LT
    Zhien, M
    [J]. THEORETICAL POPULATION BIOLOGY, 2004, 66 (03) : 259 - 268
  • [9] The mathematics of infectious diseases
    Hethcote, HW
    [J]. SIAM REVIEW, 2000, 42 (04) : 599 - 653
  • [10] An SIRS model with a nonlinear incidence rate
    Jin, Yu
    Wang, Wendi
    Xiao, Shiwu
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 34 (05) : 1482 - 1497