Epitaxial Growth of Quasi-One-Dimensional Bismuth-Halide Chains with Atomically Sharp Topological Non-Trivial Edge States

被引:18
作者
Zhuang, Jincheng [3 ,4 ]
Li, Jin [1 ,2 ]
Liu, Yundan [1 ,2 ]
Mu, Dan [1 ,2 ]
Yang, Ming [3 ,4 ]
Liu, Yani [3 ,4 ,5 ]
Zhou, Wei [6 ]
Hao, Weichang [3 ,4 ]
Zhong, Jianxin [1 ,2 ]
Du, Yi [3 ,4 ,5 ]
机构
[1] Xiangtan Univ, Hunan Key Lab Micronano Energy Mat & Devices, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Phys & Optoelect, Xiangtan 411105, Hunan, Peoples R China
[3] Beihang Univ, Sch Phys, Beijing 100191, Peoples R China
[4] Beihang Univ, BUAA UOW Joint Res Ctr, Beijing 100191, Peoples R China
[5] Univ Wollongong, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, Wollongong, NSW 2500, Australia
[6] Changshu Inst Technol, Sch Elect & Informat Engn, Changshu 215500, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金; 澳大利亚研究理事会; 国家重点研发计划;
关键词
STM; one-dimensional chains; bismuth halide; topological edge states; superstructure; SPIN HALL INSULATOR;
D O I
10.1021/acsnano.1c04928
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Quantum spin Hall insulators (QSHIs) have one-dimensional (1D) spin-momentum locked topological edge states (ES) inside the bulk band gap, which can serve as dissipationless channels for the practical applications in low consumption electronics and high performance spintronics. However, obtaining the clean and atomically sharp ES which serves as ideal 1D spin-polarized nondissipative conducting channels is demanding and still a challenge. Here, we report the formation of the quasi-1D Bi4I4 nanoribbons on the surface of Bi(111) with the support of the graphene-terminated 6H-SiC(0001) and the direct observation of the topological ES at the step edges by the scanning tunneling microscopy (STM) and spectroscopic-imaging results. The ES reside surround the edge of Bi4I4 nanoribbons and exhibits noteworthy robustness against nontime reversal symmetry (non-TRS) perturbations. The theoretical simulations verify the topological nontriviality of 1D ES, which is retained after considering the presence of the underlying Bi(111). Our study supports the existence of topological ES in Bi4I4 nanoribbons, benefiting to engineer the topological features by using the 1D nanoribbons as building blocks.
引用
收藏
页码:14850 / 14857
页数:8
相关论文
共 46 条
  • [1] Autès G, 2016, NAT MATER, V15, P154, DOI [10.1038/NMAT4488, 10.1038/nmat4488]
  • [2] Quantum spin Hall effect and topological phase transition in HgTe quantum wells
    Bernevig, B. Andrei
    Hughes, Taylor L.
    Zhang, Shou-Cheng
    [J]. SCIENCE, 2006, 314 (5806) : 1757 - 1761
  • [3] Quantum spin hall effect
    Bernevig, BA
    Zhang, SC
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (10)
  • [4] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [5] Large quantum-spin-Hall gap in single-layer 1T′ WSe2
    Chen, P.
    Pai, Woei Wu
    Chan, Y. -H.
    Sun, W. -L.
    Xu, C. -Z.
    Lin, D. -S.
    Chou, M. Y.
    Fedorov, A. -V.
    Chiang, T. -C.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [6] Electric-field-tuned topological phase transition in ultrathin Na3Bi
    Collins, James L.
    Tadich, Anton
    Wu, Weikang
    Gomes, Lidia C.
    Rodrigues, Joao N. B.
    Liu, Chang
    Hellerstedt, Jack
    Ryu, Hyejin
    Tang, Shujie
    Mo, Sung-Kwan
    Adam, Shaffique
    Yang, Shengyuan A.
    Fuhrer, Michael S.
    Edmonds, Mark T.
    [J]. NATURE, 2018, 564 (7736) : 390 - +
  • [7] Epitaxial growth of ultraflat stanene with topological band inversion
    Deng, Jialiang
    Xia, Bingyu
    Ma, Xiaochuan
    Chen, Haoqi
    Shan, Huan
    Zhai, Xiaofang
    Li, Bin
    Zhao, Aidi
    Xu, Yong
    Duan, Wenhui
    Zhang, Shou-Cheng
    Wang, Bing
    Hou, J. G.
    [J]. NATURE MATERIALS, 2018, 17 (12) : 1081 - +
  • [8] Drozdov IK, 2014, NAT PHYS, V10, P664, DOI [10.1038/NPHYS3048, 10.1038/nphys3048]
  • [9] Elifritz T. L., 1994, SPEC SCI TECHNOL, V17, P85
  • [10] The effect of moire superstructures on topological edge states in twisted bismuthene homojunctions
    Gou, Jian
    Kong, Longjuan
    He, Xiaoyue
    Huang, Yu Li
    Sun, Jiatao
    Meng, Sheng
    Wu, Kehui
    Chen, Lan
    Wee, Andrew Thye Shen
    [J]. SCIENCE ADVANCES, 2020, 6 (23)