Perturbed Lane-Emden Equations as a Boundary Value Problem with Singular Endpoints

被引:6
|
作者
Kycia, Radoslaw Antoni [1 ,2 ]
机构
[1] Masaryk Univ, Dept Math & Stat, Kotlarska 267-2, CS-61137 Brno, Czech Republic
[2] Cracow Univ Technol, Fac Phys Math & Comp Sci, Warszawska 24, PL-31155 Krakow, Poland
关键词
Generalized Lane-Emden equations; Analytic solutions; Singularities; SEMILINEAR WAVE-EQUATIONS; SELF-SIMILAR SOLUTIONS; FOWLER;
D O I
10.1007/s10883-019-09445-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper presents the solution for the existence of analytic solutions for some generalized Lane-Emden (LE) equation. Such a solution exists on the unit interval, in which endpoints are singularities of the proposed perturbed LE equation. The solution has many possible applications and one of the examples was provided.
引用
收藏
页码:333 / 347
页数:15
相关论文
共 50 条
  • [41] Quasilinear Lane-Emden equations with absorption and measure data
    Bidaut-Veron, Marie-Francoise
    Nguyen Quoc Hung
    Veron, Laurent
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (02): : 315 - 337
  • [42] Approximate Solution to the Fractional Lane-Emden Type Equations
    Nouh, M. I.
    Abdel-Salam, Emad A. -B.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A4): : 2199 - 2206
  • [43] A criterion for oscillations in the solutions of the polytropic Lane-Emden equations
    Christodoulou, Dimitris M.
    Katatbeh, Qutaibeh D.
    Graham-Eagle, James
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [44] On the numerical solution of differential equations of Lane-Emden type
    Vanani, S. Karimi
    Aminataei, A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (08) : 2815 - 2820
  • [45] Liouville theorem of the regional fractional Lane-Emden equations
    Wang, Ying
    Sun, Yanqing
    Chen, Hongxing
    Hajaiej, Hichem
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024,
  • [46] A new analytic algorithm of Lane-Emden type equations
    Liao, SJ
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 142 (01) : 1 - 16
  • [47] Solutions of the Lane-Emden and Thomas-Fermi equations
    Sabirov R.Kh.
    Russian Physics Journal, 2002, 45 (2) : 129 - 132
  • [48] A modified homotopy perturbation method coupled with the Fourier transform for nonlinear and singular Lane-Emden equations
    Nazari-Golshan, A.
    Nourazar, S. S.
    Ghafoori-Fard, H.
    Yildirim, A.
    Campo, A.
    APPLIED MATHEMATICS LETTERS, 2013, 26 (10) : 1018 - 1025
  • [49] Numerical Solutions for Singular Lane-Emden Equations Using Shifted Chebyshev Polynomials of the First Kind
    Ahmed, H. M.
    CONTEMPORARY MATHEMATICS, 2023, 4 (01): : 132 - 149
  • [50] New Galerkin operational matrix of derivatives for solving Lane-Emden singular-type equations
    Abd-Elhameed, W. M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (03):