Numerical reconstruction from the Fourier transform on the ball using prolate spheroidal wave functions

被引:5
|
作者
Isaev, Mikhail [1 ]
Novikov, Roman G. [2 ,3 ]
Sabinin, Grigory, V [4 ]
机构
[1] Monash Univ, Sch Math, Clayton, Vic, Australia
[2] Ecole Polytech Inst Polytech Paris, CNRS, CMAP, Palaiseau, France
[3] IEPT RAS, Moscow, Russia
[4] Lomonosov Moscow State Univ, Fac Mech & Math, Moscow, Russia
基金
俄罗斯基础研究基金会; 澳大利亚研究理事会;
关键词
ill-posed inverse problems; band-limited Fourier transform; prolate spheroidal wave functions; Radon transform; super-resolution; INVERSE; EIGENVALUES; ALGORITHM; BOUNDS;
D O I
10.1088/1361-6420/ac87cb
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We implement numerically formulas of Isaev and Novikov (2022 J. Math. Pures Appl. 163 318-33) for finding a compactly supported function v on R-d, d >= 1, from its Fourier transform F[v] given within the ball B-r. For the one-dimensional case, these formulas are based on the theory of prolate spheroidal wave functions, which arise, in particular, in the singular value decomposition of the aforementioned band-limited Fourier transform for d = 1. In multidimensions, these formulas also include inversion of the Radon transform. In particular, we give numerical examples of super-resolution, that is, recovering details beyond the diffraction limit.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Reconstruction from the Fourier transform on the ball via prolate spheroidal wave functions
    Isaev, Mikhail
    Novikov, Roman G.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 163 : 318 - 333
  • [2] Prolate spheroidal wave functions associated with the canonical Fourier-Bessel transform and uncertainty principles
    Sahbani, Jihed
    Guettiti, Takoua
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (14) : 15506 - 15525
  • [3] Sound Field Reconstruction Using Prolate Spheroidal Wave Functions and Sparse Regularization
    Zhang, Xuxin
    Lou, Jingjun
    Zhu, Shijian
    Lu, Jinfang
    Li, Ronghua
    SENSORS, 2023, 23 (19)
  • [4] A numerical study of the Legendre-Galerkin method for the evaluation of the prolate spheroidal wave functions
    Schmutzhard, Sebastian
    Hrycak, Tomasz
    Feichtinger, Hans G.
    NUMERICAL ALGORITHMS, 2015, 68 (04) : 691 - 710
  • [5] Spectral analysis of the finite Hankel transform and circular prolate spheroidal wave functions
    Karoui, Abderrazek
    Moumni, Taher
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (02) : 315 - 333
  • [6] Reconstruction of nonuniformly sampled time-limited signals using prolate spheroidal wave functions
    Senay, Seda
    Chaparro, Luis F.
    Durak, Lutfiye
    SIGNAL PROCESSING, 2009, 89 (12) : 2585 - 2595
  • [7] Approximations in Sobolev spaces by prolate spheroidal wave functions
    Bonami, Aline
    Karoui, Abderrazek
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2017, 42 (03) : 361 - 377
  • [8] ANALYSIS OF SPECTRAL APPROXIMATIONS USING PROLATE SPHEROIDAL WAVE FUNCTIONS
    Wang, Li-Lian
    MATHEMATICS OF COMPUTATION, 2010, 79 (270) : 807 - 827
  • [9] Improved bounds for the eigenvalues of prolate spheroidal wave functions and discrete prolate spheroidal sequences
    Karnik, Santhosh
    Romberg, Justin
    Davenport, Mark A.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 55 : 97 - 128
  • [10] Generalized prolate spheroidal wave functions for offset linear canonical transform in Clifford analysis
    Kou, K.
    Morais, J.
    Zhang, Y.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (09) : 1028 - 1041