Characterizing shared and distinct symptom clusters in common chronic conditions through natural language processing of nursing notes

被引:24
作者
Koleck, Theresa A. [1 ]
Topaz, Maxim [2 ,3 ]
Tatonetti, Nicholas P. [3 ,4 ,5 ,6 ,7 ]
George, Maureen [2 ]
Miaskowski, Christine [8 ]
Smaldone, Arlene [2 ,9 ]
Bakken, Suzanne [2 ,3 ,4 ]
机构
[1] Univ Pittsburgh, Sch Nursing, 440 Victoria Bldg,3500 Victoria St, Pittsburgh, PA 15261 USA
[2] Columbia Univ, Sch Nursing, New York, NY USA
[3] Columbia Univ, Data Sci Inst, New York, NY USA
[4] Columbia Univ, Dept Biomed Informat, New York, NY USA
[5] Columbia Univ, Dept Syst Biol, New York, NY USA
[6] Columbia Univ, Dept Med, New York, NY USA
[7] Columbia Univ, Inst Genom Med, New York, NY USA
[8] Univ Calif San Francisco, Sch Nursing, San Francisco, CA 94143 USA
[9] Columbia Univ, Coll Dent Med, New York, NY USA
关键词
chronic conditions; natural language processing; nursing informatics; signs and symptoms; symptom clusters; HEART-FAILURE PHENOTYPES; PROINFLAMMATORY CYTOKINES; CLINICAL-IMPLICATIONS; TREATMENT PATTERNS; SUBGROUP ANALYSIS; MANAGEMENT; CHEMOKINES; OUTCOMES; DISEASE;
D O I
10.1002/nur.22190
中图分类号
R47 [护理学];
学科分类号
1011 ;
摘要
Data-driven characterization of symptom clusters in chronic conditions is essential for shared cluster detection and physiological mechanism discovery. This study aims to computationally describe symptom documentation from electronic nursing notes and compare symptom clusters among patients diagnosed with four chronic conditions-chronic obstructive pulmonary disease (COPD), heart failure, type 2 diabetes mellitus, and cancer. Nursing notes (N = 504,395; 133,977 patients) were obtained for the 2016 calendar year from a single medical center. We used NimbleMiner, a natural language processing application, to identify the presence of 56 symptoms. We calculated symptom documentation prevalence by note and patient for the corpus. Then, we visually compared documentation for a subset of patients (N = 22,657) diagnosed with COPD (n = 3339), heart failure (n = 6587), diabetes (n = 12,139), and cancer (n = 7269) and conducted multiple correspondence analysis and hierarchical clustering to discover underlying groups of patients who have similar symptom profiles (i.e., symptom clusters) for each condition. As expected, pain was the most frequently documented symptom. All conditions had a group of patients characterized by no symptoms. Shared clusters included cardiovascular symptoms for heart failure and diabetes; pain and other symptoms for COPD, diabetes, and cancer; and a newly-identified cognitive and neurological symptom cluster for heart failure, diabetes, and cancer. Cancer (gastrointestinal symptoms and fatigue) and COPD (mental health symptoms) each contained a unique cluster. In summary, we report both shared and distinct, as well as established and novel, symptom clusters across chronic conditions. Findings support the use of electronic health record-derived notes and NLP methods to study symptoms and symptom clusters to advance symptom science.
引用
收藏
页码:906 / 919
页数:14
相关论文
共 70 条
[1]   Subtypes of Type 2 Diabetes Determined From Clinical Parameters [J].
Ahlqvist, Emma ;
Prasad, Rashmi B. ;
Groop, Leif .
DIABETES, 2020, 69 (10) :2086-2093
[2]   Clinical Implications of Chronic Heart Failure Phenotypes Defined by Cluster Analysis [J].
Ahmad, Tariq ;
Pencina, Michael J. ;
Schulte, Phillip J. ;
O'Brien, Emily ;
Whellan, David J. ;
Pina, Ileana L. ;
Kitzman, Dalane W. ;
Lee, Kerry L. ;
O'Connor, Christopher M. ;
Felker, G. Michael .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2014, 64 (17) :1765-1774
[3]  
Allison KH, 2014, ONCOLOGY-NY, V28, P772
[4]  
Armstrong Terri S, 2003, Oncol Nurs Forum, V30, P601, DOI 10.1188/03.ONF.601-606
[5]   The Cytokine Network in Chronic Obstructive Pulmonary Disease [J].
Barnes, Peter J. .
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2009, 41 (06) :631-638
[6]   A Real-world Analysis of Treatment Patterns for Cholinesterase Inhibitors and Memantine among Newly-diagnosed Alzheimer’s Disease Patients [J].
Bent-Ennakhil N. ;
Coste F. ;
Xie L. ;
Aigbogun M.S. ;
Wang Y. ;
Kariburyo F. ;
Hartry A. ;
Baser O. ;
Neumann P. ;
Fillit H. .
Neurology and Therapy, 2017, 6 (1) :131-144
[7]   Cancer-Related Fatigue, Version 2.2015 [J].
Berger, Ann M. ;
Mooney, Kathi ;
Alvarez-Perez, Amy ;
Breitbart, William S. ;
Carpenter, Kristen M. ;
Cella, David ;
Cleeland, Charles ;
Dotan, Efrat ;
Eisenberger, Mario A. ;
Escalante, Carmen P. ;
Jacobsen, Paul B. ;
Jankowski, Catherine ;
LeBlanc, Thomas ;
Ligibel, Jennifer A. ;
Loggers, Elizabeth Trice ;
Mandrell, Belinda ;
Murphy, Barbara A. ;
Palesh, Oxana ;
Pirl, William F. ;
Plaxe, Steven C. ;
Riba, Michelle B. ;
Rugo, Hope S. ;
Salvador, Carolina ;
Wagner, Lynne I. ;
Wagner-Johnston, Nina D. ;
Zachariah, Finly J. ;
Bergman, Mary Anne ;
Smith, Courtney .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2015, 13 (08) :1012-1039
[8]   National Institutes of Health Symptom Science Model sheds light on patient symptoms [J].
Cashion, Ann K. ;
Gill, Jessica ;
Hawes, Rebecca ;
Henderson, Wendy A. ;
Saligan, Leorey .
NURSING OUTLOOK, 2016, 64 (05) :499-506
[9]   Distinct symptom experiences in subgroups of patients with COPD [J].
Christensen, Vivi L. ;
Rustoen, Tone ;
Cooper, Bruce A. ;
Miaskowski, Christine ;
Henriksen, Anne H. ;
Bentsen, Signe B. ;
Holm, Are M. .
INTERNATIONAL JOURNAL OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE, 2016, 11 :1801-1809
[10]   ASSESSMENT OF MULTIPLE CO-OCCURRING CANCER SYMPTOMS IN THE CLINICAL SETTING [J].
Cooley, Mary E. ;
Siefert, Mary Lou .
SEMINARS IN ONCOLOGY NURSING, 2016, 32 (04) :361-372