A comparison of machine learning algorithms for diabetes prediction

被引:62
|
作者
Khanam, Jobeda Jamal [1 ]
Foo, Simon Y. [1 ]
机构
[1] FAMU FSU Coll Engn, Dept Elect & Comp Engn, Tallahassee, FL 32310 USA
来源
ICT EXPRESS | 2021年 / 7卷 / 04期
关键词
Machine learning; Data Mining; Neural Network; K-fold Cross Validation; Accuracy;
D O I
10.1016/j.icte.2021.02.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Diabetes is a disease that has no permanent cure; hence early detection is required. Data mining, machine learning (ML) algorithms, and Neural Network (NN) methods are used in diabetes prediction in our research. We used the Pima Indian Diabetes (PID) dataset for our research, collected from the UCI Machine Learning Repository. The dataset contains information about 768 patients and their corresponding nine unique attributes. We used seven ML algorithms on the dataset to predict diabetes. We found that the model with Logistic Regression (LR) and Support Vector Machine (SVM) works well on diabetes prediction. We built the NN model with a different hidden layer with various epochs and observed the NN with two hidden layers provided 88.6% accuracy. (C) 2021 The Korean Institute of Communications and Information Sciences (KICS). Publishing services by Elsevier B.V.
引用
收藏
页码:432 / 439
页数:8
相关论文
共 50 条
  • [31] Comparison between machine learning algorithms for TBM advance rate prediction
    Huang, Shengfeng
    Dastpak, Pooya
    Esmaeilpour, Misagh
    Liu, Kaijian
    Sousa, Rita L.
    PROCEEDINGS OF THE ITA-AITES WORLD TUNNEL CONGRESS 2023, WTC 2023: Expanding Underground-Knowledge and Passion to Make a Positive Impact on the World, 2023, : 2710 - 2716
  • [32] Comparison of the prediction accuracy of machine learning algorithms in crosslinguistic vowel classification
    Georgios P. Georgiou
    Scientific Reports, 13 (1)
  • [33] Comparison and implementation of machine learning algorithms for breast cancer recurrence prediction
    Houissa, Ines
    Ghalleb, Montassar
    Jilani, Halima
    Hamdi, Sana
    Sassi, Imen
    Bouida, Med Amine
    Zenzri, Yosr
    Mousli, Alia
    Houcine, Yoldoz
    Zemni, Ines
    Dhieb, Tarak Ben
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2024, 34 (SUPPL_1) : A278 - A278
  • [34] Optimization and comparison of machine learning algorithms for the prediction of the performance of football players
    Gianluca Morciano
    Andrea Zingoni
    Giuseppe Calabrò
    Neural Computing and Applications, 2024, 36 (31) : 19653 - 19666
  • [35] Comparison of Machine Learning Algorithms and Nomogram Construction for Diabetic Retinopathy Prediction in Type 2 Diabetes Mellitus Patients
    Jiang, Weiliang
    Li, Zijing
    OPHTHALMIC RESEARCH, 2024, 67 (01) : 537 - 548
  • [36] Travel Time Prediction: Comparison of Machine Learning Algorithms in a Case Study
    Goudarzi, Forough
    IEEE 20TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS / IEEE 16TH INTERNATIONAL CONFERENCE ON SMART CITY / IEEE 4TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND SYSTEMS (HPCC/SMARTCITY/DSS), 2018, : 1404 - 1407
  • [37] COMPARISON OF DIFFERENT SUPERVISED MACHINE LEARNING ALGORITHMS FOR THE PREDICTION OF TUBERCULOSIS MORTALITY
    Lim, Apiradee
    Taufik, Muhamad Rifki
    Tongkumchum, Phattrawan
    Dureh, Nurin
    ADVANCES AND APPLICATIONS IN STATISTICS, 2020, 62 (02) : 185 - 201
  • [38] Machine Learning for Diabetes Prediction
    Ahmed, Usman
    Li, Chunxiao
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 16 - 19
  • [39] Prediction of gestational diabetes mellitus in Asian women using machine learning algorithms
    Kang, Byung Soo
    Lee, Seon Ui
    Hong, Subeen
    Choi, Sae Kyung
    Shin, Jae Eun
    Wie, Jeong Ha
    Jo, Yun Sung
    Kim, Yeon Hee
    Kil, Kicheol
    Chung, Yoo Hyun
    Jung, Kyunghoon
    Hong, Hanul
    Park, In Yang
    Ko, Hyun Sun
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [40] Prediction of gestational diabetes mellitus at the first trimester: machine-learning algorithms
    Li, Yi-xin
    Liu, Yi-chen
    Wang, Mei
    Huang, Yu-li
    ARCHIVES OF GYNECOLOGY AND OBSTETRICS, 2024, 309 (06) : 2557 - 2566