Period-doubling route to mixed-mode chaos

被引:22
作者
Awal, Naziru M. [1 ]
Epstein, Irving R. [1 ]
机构
[1] Brandeis Univ, Dept Chem, Waltham, MA 02453 USA
基金
美国国家科学基金会;
关键词
INCREMENTING BIFURCATIONS; ELECTROCHEMICAL SYSTEM; ADDING BIFURCATIONS; CANARD MECHANISM; BONHOEFFER-VAN; OSCILLATIONS; BEHAVIOR;
D O I
10.1103/PhysRevE.104.024211
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Mixed-mode oscillations (MMOs) are a complex dynamical behavior in which each cycle of oscillation consists of one or more large amplitude spikes followed by one or more small amplitude peaks. MMOs typically undergo period-adding bifurcations under parameter variation. We demonstrate here, in a set of three identical, linearly coupled van der Pol oscillators, a scenario in which MMOs exhibit a period-doubling sequence to chaos that preserves the MMO structure, as well as period-adding bifurcations. We characterize the chaotic nature of the MMOs and attribute their existence to a master-slave-like forcing of the inner oscillator by the outer two with a sufficient phase difference between them. Simulations of a single nonautonomous oscillator forced by two sine functions support this interpretation and suggest that the MMO period-doubling scenario may be more general.
引用
收藏
页数:25
相关论文
共 41 条
  • [11] Rhythms of the brain: An examination of mixed mode oscillation approaches to the analysis of neurophysiological data
    Erchova, Irina
    McGonigle, David J.
    [J]. CHAOS, 2008, 18 (01)
  • [12] Feigenbaum MitchellJ., 1976, ALAMOS THEORETICAL D
  • [13] The Period Adding and Incrementing Bifurcations: From Rotation Theory to Applications
    Granados, Albert
    Alseda, Lluis
    Krupa, Maciej
    [J]. SIAM REVIEW, 2017, 59 (02) : 225 - 292
  • [14] A 3-VARIABLE MODEL OF DETERMINISTIC CHAOS IN THE BELOUSOV-ZHABOTINSKY REACTION
    GYORGYI, L
    FIELD, RJ
    [J]. NATURE, 1992, 355 (6363) : 808 - 810
  • [15] EXPERIMENTAL-STUDY OF MULTIPLE PEAK PERIODIC AND NONPERIODIC OSCILLATIONS IN THE BELOUSOV-ZHABOTINSKII REACTION
    HUDSON, JL
    HART, M
    MARINKO, D
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1979, 71 (04) : 1601 - 1606
  • [16] Mixed Mode Oscillations in Mouse Spinal Motoneurons Arise from a Low Excitability State
    Iglesias, Caroline
    Meunier, Claude
    Manuel, Marin
    Timofeeva, Yulia
    Delestree, Nicolas
    Zytnicki, Daniel
    [J]. JOURNAL OF NEUROSCIENCE, 2011, 31 (15) : 5829 - 5840
  • [17] Nested mixed-mode oscillations
    Inaba, Naohiko
    Kousaka, Takuji
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2020, 401
  • [18] Calcium-Induced Calcium Release during Action Potential Firing in Developing Inner Hair Cells
    Iosub, Radu
    Avitabile, Daniele
    Grant, Lisa
    Tsaneva-Atanasova, Krasimira
    Kennedy, Helen J.
    [J]. BIOPHYSICAL JOURNAL, 2015, 108 (05) : 1003 - 1012
  • [19] Competition model for aperiodic stochastic resonance in a Fitzhugh-Nagumo model of cardiac sensory neurons
    Kember, GC
    Fenton, GA
    Armour, JA
    Kalyaniwalla, N
    [J]. PHYSICAL REVIEW E, 2001, 63 (04):
  • [20] BIFURCATIONS OF MIXED-MODE OSCILLATIONS IN A 3-VARIABLE AUTONOMOUS VANDERPOL-DUFFING MODEL WITH A CROSS-SHAPED PHASE-DIAGRAM
    KOPER, MTM
    [J]. PHYSICA D, 1995, 80 (1-2): : 72 - 94