Polynomials with roots mod p for all primes p

被引:17
作者
Brandl, R
Bubboloni, D
Hupp, I
机构
[1] Univ Wurzburg, Inst Math, D-97074 Wurzburg, Germany
[2] DIMAD, I-50134 Florence, Italy
[3] Inst Math, D-56075 Koblenz, Germany
关键词
D O I
10.1515/jgth.2001.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f(X) be an integer polynomial of degree m with no linear factors, and assume that its Galois group is the (most common) symmetric group S-n, (n less than or equal to m). If f(X) has a root module p for all primes p, then 3 less than or equal to n less than or equal to 6.
引用
收藏
页码:233 / 239
页数:7
相关论文
共 10 条
[1]  
[Anonymous], ENDLICHE GRUPPEN 1
[2]  
[Anonymous], 1932, ACTA LITT SCI SZEGED
[3]   INTEGER POLYNOMIALS THAT ARE REDUCIBLE MODULO ALL PRIMES [J].
BRANDL, R .
AMERICAN MATHEMATICAL MONTHLY, 1986, 93 (04) :286-288
[4]   A COVERING PROPERTY OF FINITE-GROUPS [J].
BRANDL, R .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1981, 23 (02) :227-235
[5]  
BUBBOLONI D, 1998, COVERINGS SYMMETRIC
[6]  
HUPP I, 1991, THESIS U WURZBURG
[7]   KRONECKER CLASSES OF FIELDS AND COVERING SUBGROUPS OF FINITE-GROUPS [J].
PRAEGER, CE .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1994, 57 :17-34
[8]   COVERING SUBGROUPS OF GROUPS AND KRONECKER CLASSES OF FIELDS [J].
PRAEGER, CE .
JOURNAL OF ALGEBRA, 1988, 118 (02) :455-463
[9]   The infrequence of equations with affect. [J].
van der Waerden, BL .
MATHEMATISCHE ANNALEN, 1934, 109 :13-16
[10]  
Wielandt H., 1964, Finite Permutation Groups