Grain Boundaries Trigger Basal Plane Catalytic Activity for the Hydrogen Evolution Reaction in Monolayer MoS2

被引:22
|
作者
Dong, Sha [1 ]
Wang, Zhiguo [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Elect Sci & Engn, Ctr Publ Secur Technol, Chengdu 610054, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Monolayer molybdenum disulfide; Grain boundaries; Hydrogen evolution reaction; Density functional theory; EDGE SITES; SIESTA METHOD; ADSORPTION; NANOSHEETS; DIFFUSION; GRAPHENE; LITHIUM; OXYGEN; EXFOLIATION; DESIGN;
D O I
10.1007/s12678-018-0485-z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Monolayer molybdenum disulfide (MoS2) is considered to be a promising catalyst for replacing noble metals for the large-scale production of hydrogen through the hydrogen evolution reaction (HER). However, the catalytic activity sites are located at the limited edges and massive inert sites in the basal plane. Triggering the basal plane catalytic activity for the HER is desired to improve the catalytic behavior of monolayer MoS2. In this work, we studied the catalytic behavior of the grain boundaries (GBs) in monolayer MoS2 using first-principle calculations based on density functional theory (DFT). The results show that the Gibbs free energy for hydrogen adsorption on MoS2 can be greatly reduced from 1.93 eV on pristine MoS2 to 0.01 eV on MoS2 with GBs, which indicate that the presence of GBs in the MoS2 monolayer can trigger the basal plane catalytic activity for the HER. The S vacancy, the bridge site of the Mo-Mo dimer, and the top site of the S atom of the S-S dimer are the catalytically active sites. GBs could be a general way to generate new active sites in two-dimensional transition metal dichalcogenides, thus providing a new routine to improve the catalytic efficiency for the HER.
引用
收藏
页码:744 / 751
页数:8
相关论文
共 50 条
  • [21] Microscopic insights into the catalytic mechanisms of monolayer MoS2 and its heterostructures in hydrogen evolution reaction
    Min Hong
    Jianping Shi
    Yahuan Huan
    Qin Xie
    Yanfeng Zhang
    Nano Research, 2019, 12 : 2140 - 2149
  • [22] Activating the MoS2 Basal Plane by Controllable Fabrication of Pores for an Enhanced Hydrogen Evolution Reaction
    Geng, Shuo
    Liu, Hu
    Yang, Weiwei
    Yu, Yong Sheng
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (71) : 19075 - 19080
  • [23] Sulfur Line Vacancies in MoS2 for Catalytic Hydrogen Evolution Reaction
    Tang, Meng
    Yin, Weinan
    Liu, Shijie
    Yu, Haoxuan
    He, Yuhao
    Cai, Yuntao
    Wang, Longlu
    CRYSTALS, 2022, 12 (09)
  • [24] Microscopic insights into the catalytic mechanisms of monolayer MoS2 and its heterostructures in hydrogen evolution reaction
    Hong, Min
    Shi, Jianping
    Huan, Yahuan
    Xie, Qin
    Zhang, Yanfeng
    NANO RESEARCH, 2019, 12 (09) : 2140 - 2149
  • [25] Basal plane activation in monolayer MoTe2 for the hydrogen evolution reaction via phase boundaries
    Chen, Yiqing
    Ou, Pengfei
    Bie, Xiaohan
    Song, Jun
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (37) : 19522 - 19532
  • [26] 2D-Heterostructure assisted activation of MoS2 basal plane for enhanced photoelectrochemical hydrogen evolution reaction
    Roy, Krishnendu
    Maitra, Soumyajit
    Ghosh, Dibyendu
    Kumar, Praveen
    Devi, Pooja
    CHEMICAL ENGINEERING JOURNAL, 2022, 435
  • [27] Improvement of MoS2 electrocatalytic activity for hydrogen evolution reaction by ion irradiation
    Mravik, Jelena Rmus
    Milanovic, Igor
    Govedarovic, Sanja Milosevic
    Mrakovic, Ana
    Korneeva, Ekaterina
    Simatovic, Ivana Stojkovic
    Kurko, Sandra
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (98) : 38676 - 38685
  • [28] How to dope the basal plane of 2H-MoS2 to boost the hydrogen evolution reaction?
    Abidi, Nawras
    Bonduelle-Skrzypczak, Audrey
    Steinmann, Stephan N.
    ELECTROCHIMICA ACTA, 2023, 439
  • [29] Active Basal Plane Catalytic Activity via Interfacial Engineering for a Finely Tunable Conducting Polymer/MoS2 Hydrogen Evolution Reaction Multilayer Structure
    Xu, Linan
    Zhang, Yihe
    Feng, Lili
    Li, Xin
    Cui, Yanying
    An, Qi
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (01) : 734 - 744
  • [30] Local Structure of Sulfur Vacancies on the Basal Plane of Monolayer MoS2
    Garcia-Esparza, Angel T.
    Park, Sangwook
    Abroshan, Hadi
    Mellone, Oscar A. Paredes
    Vinson, John
    Abraham, Baxter
    Kim, Taeho R.
    Nordlund, Dennis
    Gallo, Alessandro
    Alonso-Mori, Roberto
    Zheng, Xiaolin
    Sokaras, Dimosthenis
    ACS NANO, 2022, 16 (04) : 6725 - 6733