Runoff changes in the major river basins of China and their responses to potential driving forces

被引:144
作者
Yang, Lin [1 ]
Zhao, Guangju [1 ,2 ]
Tian, Peng [3 ]
Mu, Xingmin [1 ,2 ]
Tian, Xiaojing [1 ]
Feng, Jiahao [1 ]
Bai, Yunpeng [1 ]
机构
[1] Northwest A&F Univ, Inst Soil & Water Conservat, State Key Lab Soil Eros & Dryland Farming Loess P, 26 Xinong Rd, Yangling 712100, Shaanxi, Peoples R China
[2] Chinese Acad Sci & Minist Water Resources, Inst Soil & Water Conservat, State Key Lab Soil Eros & Dryland Farming Loess P, Xinong Rd 26, Yangling 712100, Shaanxi, Peoples R China
[3] Northwest A&F Univ, Coll Nat Resources & Environm, 26 Xinong Rd, Yangling 712100, Shaanxi, Peoples R China
关键词
Runoff changes; Chinese river basins; Human activities; Budyko hypothesis; Attribution analysis; CLIMATE-CHANGE; WATER-RESOURCES; YELLOW-RIVER; QUANTITATIVE ASSESSMENT; MIDDLE REACHES; SEDIMENT FLUX; LOESS PLATEAU; STREAMFLOW; IMPACTS; VARIABILITY;
D O I
10.1016/j.jhydrol.2022.127536
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Identifying the effect of climate variability and human activities on runoff changes is scientifically essential for understanding hydrological processes and sustainable water resources management. This study selected 64 catchments located in the mainland of China to quantify the effects of different driving forces on runoff changes. Results showed that annual runoff in the Haihe river basin, Liaohe river basin, and Yellow river basin exhibited significantly decreasing trends from 1965 to 2018 (P < 0.05), whereas the Northwest river basin had positive trends in the annual runoff. Meanwhile, the Pettitt test method was applied to detect abrupt changes in annual runoff. Compared to the rivers in Southern China, the northern rivers had significant abrupt changes in annual runoff and mostly occurred in the 1990 s. The Choudhury-Yang equation based on the Budyko hypothesis was used to assess the sensitivity of runoff to precipitation (P), potential evapotranspiration (ET0), and the land surface (n) changes. The results showed that runoff was more sensitive to P and n, compared to ET0. Attribution analysis revealed that P was the dominant factor in the Northwest river basin, Southwest river basin, Yangtze river basin, Southeast river basin, and Pearl river basin, whereas the changes in n were responsible for runoff changes in the Liaohe river basin, Haihe river basin, Yellow river Basin, Songhuajiang river basin, and Huaihe river basin. The land surface changes (n) were resulted from vegetation restoration, urbanization expansion, construction of reservoirs/check dams, and surface water withdrawals, leading to significant changes in river runoff in recent years. The findings can provide good insight for water resources management across China.
引用
收藏
页数:12
相关论文
共 90 条
[51]   NONPARAMETRIC TESTS AGAINST TREND [J].
Mann, Henry B. .
ECONOMETRICA, 1945, 13 (03) :245-259
[52]  
Mezentsev V., 1955, Meteorol. Gidrol, V5, P24
[53]   Assessing the impact of urbanization on storm runoff in a pen-urban catchment using historical change in impervious cover [J].
Miller, James D. ;
Kim, Hyeonjun ;
Kjeldsen, Thomas R. ;
Packman, John ;
Grebby, Stephen ;
Dearden, Rachel .
JOURNAL OF HYDROLOGY, 2014, 515 :59-70
[54]   CLIMATE, SOIL-WATER STORAGE, AND THE AVERAGE ANNUAL WATER-BALANCE [J].
MILLY, PCD .
WATER RESOURCES RESEARCH, 1994, 30 (07) :2143-2156
[55]  
[穆兴民 Mu Xingmin], 2010, [水文, Hydrology], V30, P47
[56]   Modelling and attributing evapotranspiration changes on China's Loess Plateau with Budyko framework considering vegetation dynamics and climate seasonality [J].
Ning, Tingting ;
Liu, Wenzhao ;
Li, Zhi ;
Feng, Qi .
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2020, 34 (08) :1217-1230
[57]   Separating the impacts of climate change and land surface alteration on runoff reduction in the Jing River catchment of China [J].
Ning, Tingting ;
Li, Zhi ;
Liu, Wenzhao .
CATENA, 2016, 147 :80-86
[58]   Linkages between ENSO/PDO signals and precipitation, streamflow in China during the last 100 years [J].
Ouyang, R. ;
Liu, W. ;
Fu, G. ;
Liu, C. ;
Hu, L. ;
Wang, H. .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2014, 18 (09) :3651-3661
[59]  
Pettitt A. N., 1979, Applied Statistics, V28, P126, DOI 10.2307/2346729
[60]   The impacts of climate change on water resources and agriculture in China [J].
Piao, Shilong ;
Ciais, Philippe ;
Huang, Yao ;
Shen, Zehao ;
Peng, Shushi ;
Li, Junsheng ;
Zhou, Liping ;
Liu, Hongyan ;
Ma, Yuecun ;
Ding, Yihui ;
Friedlingstein, Pierre ;
Liu, Chunzhen ;
Tan, Kun ;
Yu, Yongqiang ;
Zhang, Tianyi ;
Fang, Jingyun .
NATURE, 2010, 467 (7311) :43-51