Performances of pure random walk algorithms on constraint satisfaction problems with growing domains

被引:6
作者
Xu, Wei [1 ]
Gong, Fuzhou [2 ]
机构
[1] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Constraint satisfaction problems; Model RB; Random walk; Local search algorithms; PHASE-TRANSITION; BOUNDS;
D O I
10.1007/s10878-015-9891-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The performances of two types of pure random walk (PRW) algorithms for a model of constraint satisfaction problem with growing domains (called Model RB) are investigated. Threshold phenomenons appear for both algorithms. In particular, when the constraint density is smaller than a threshold value , PRW algorithms can solve instances of Model RB efficiently, but when is bigger than the , they fail. Using a physical method, we find out the threshold values for both algorithms. When the number of variables is large, the threshold values tend to zero, so generally speaking PRW does not work on Model RB. By performing experiments, we show that PRW strategy cannot do better than other fundamental strategies.
引用
收藏
页码:51 / 66
页数:16
相关论文
共 35 条
  • [11] Consistency and random constraint satisfaction models
    Gao, Yong
    Culberson, Joseph
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2007, 28 (517-557) : 517 - 557
  • [12] Random constraint satisfaction: Flaws and structure
    Gent I.P.
    Macintyre E.
    Prosser P.
    Smith B.M.
    Walsh T.
    [J]. Constraints, 2001, 6 (4) : 345 - 372
  • [13] Guangyan Zhou, 2015, Journal of Combinatorial Optimization, V30, P188, DOI 10.1007/s10878-014-9731-3
  • [14] An upper (lower) bound for Max (Min) CSP
    Huang Ping
    Yin MingHao
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (07) : 1 - 9
  • [15] Jiang W, 2011, LECT NOTES COMPUT SC, V6681, P233, DOI 10.1007/978-3-642-21204-8_26
  • [16] TAIL BOUNDS FOR OCCUPANCY AND THE SATISFIABILITY THRESHOLD CONJECTURE
    KAMATH, A
    MOTWANI, R
    PALEM, K
    SPIRAKIS, P
    [J]. RANDOM STRUCTURES & ALGORITHMS, 1995, 7 (01) : 59 - 80
  • [17] Lecoutre Christophe, 2009, Constraint Networks: Techniques and Algorithms
  • [18] Large hypertree width for sparse random hypergraphs
    Liu, Tian
    Wang, Chaoyi
    Xu, Ke
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 29 (03) : 531 - 540
  • [19] Richter S, 2007, LECT NOTES ARTIF INT, V4667, P412
  • [20] Rossi F, 2006, FOUND ARTIF INTELL, P1