Solitary wave solutions for nonlinear fractional Schrodinger equation in Gaussian nonlocal media

被引:10
作者
Zou, Guang-an [1 ]
Wang, Bo [1 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
关键词
Fractional Schrodinger equation; Gaussian nonlocal media; Solitary wave solutions; Numerical simulations; SOBOLEV;
D O I
10.1016/j.aml.2018.08.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is devoted to the study of nonlinear fractional Schrodinger equation with a Gaussian nonlocal response. We firstly prove the existence of solitary wave solutions by using the variational method and Mountain Pass Theorem. Numerical simulations are presented to verify the findings of the existence theorem. And we also investigate the impacts of Gaussian nonlocal response and fractional-order derivatives on the solitary waves, which enable us to perform control experiments for the development of rogue waves in quantum mechanics and optics. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:50 / 57
页数:8
相关论文
共 22 条
[1]   On a periodic Schrodinger equation with nonlocal superlinear part [J].
Ackermann, N .
MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (02) :423-443
[2]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[3]   Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian [J].
Felmer, Patricio ;
Quaas, Alexander ;
Tan, Jinggang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) :1237-1262
[4]   Existence and stability of standing waves for nonlinear fractional Schroumldinger equations [J].
Guo, Boling ;
Huang, Daiwen .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (08)
[5]  
Kilbas A.A., 2006, North-Holland Mathematics Studies, V204
[6]   Fractional quantum mechanics [J].
Laskin, N .
PHYSICAL REVIEW E, 2000, 62 (03) :3135-3145
[7]   Fractional Schrodinger equation [J].
Laskin, N .
PHYSICAL REVIEW E, 2002, 66 (05) :7-056108
[8]   Fractional quantum mechanics and Levy path integrals [J].
Laskin, N .
PHYSICS LETTERS A, 2000, 268 (4-6) :298-305
[9]   SHARP CONSTANTS IN THE HARDY-LITTLEWOOD-SOBOLEV AND RELATED INEQUALITIES [J].
LIEB, EH .
ANNALS OF MATHEMATICS, 1983, 118 (02) :349-374
[10]  
Lions P. L., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P1063, DOI 10.1016/0362-546X(80)90016-4