Chemical Similarity Enrichment Analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets

被引:243
作者
Barupal, Dinesh Kumar [1 ]
Fiehn, Oliver [1 ]
机构
[1] Univ Calif Davis, Genome Ctr, West Coast Metabol Ctr, NIH, Davis, CA 95616 USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
美国国家卫生研究院;
关键词
SPECTROMETRY-BASED METABOLOMICS; MOLECULAR SIGNATURES; ENZYME PROMISCUITY; OXIDATIVE STRESS; GENE ONTOLOGY; METABOLITES; DATABASE; LUNG; TOOL; EXPRESSION;
D O I
10.1038/s41598-017-15231-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metabolomics answers a fundamental question in biology: How does metabolism respond to genetic, environmental or phenotypic perturbations? Combining several metabolomics assays can yield datasets for more than 800 structurally identified metabolites. However, biological interpretations of metabolic regulation in these datasets are hindered by inherent limits of pathway enrichment statistics. We have developed ChemRICH, a statistical enrichment approach that is based on chemical similarity rather than sparse biochemical knowledge annotations. ChemRICH utilizes structure similarity and chemical ontologies to map all known metabolites and name metabolic modules. Unlike pathway mapping, this strategy yields study-specific, non-overlapping sets of all identified metabolites. Subsequent enrichment statistics is superior to pathway enrichments because ChemRICH sets have a self-contained size where p-values do not rely on the size of a background database. We demonstrate ChemRICH's efficiency on a public metabolomics data set discerning the development of type 1 diabetes in a non-obese diabetic mouse model.
引用
收藏
页数:11
相关论文
共 68 条
[1]   Comparative Circadian Metabolomics Reveal Differential Effects of Nutritional Challenge in the Serum and Liver [J].
Abbondante, Serena ;
Eckel-Mahan, Kristin L. ;
Ceglia, Nicholas J. ;
Baldi, Pierre ;
Sassone-Corsi, Paolo .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (06) :2812-2828
[2]   GO PaD: The gene ontology partition database [J].
Alterovitz, Gil ;
Xiang, Michael ;
Mohan, Mamta ;
Ramoni, Marco F. .
NUCLEIC ACIDS RESEARCH, 2007, 35 :D322-D327
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   Environmental Tobacco Smoke Alters Metabolic Systems in Adult Rats [J].
Barupal, Dinesh K. ;
Pinkerton, Kent E. ;
Hood, Carol ;
Kind, Tobias ;
Fiehn, Oliver .
CHEMICAL RESEARCH IN TOXICOLOGY, 2016, 29 (11) :1818-1827
[5]   MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity [J].
Barupal, Dinesh K. ;
Haldiya, Pradeep K. ;
Wohlgemuth, Gert ;
Kind, Tobias ;
Kothari, Shanker L. ;
Pinkerton, Kent E. ;
Fiehn, Oliver .
BMC BIOINFORMATICS, 2012, 13
[6]   Metabolic Profiling in Formalin-Fixed and Paraffin-Embedded Prostate Cancer Tissues [J].
Cacciatore, Stefano ;
Zadra, Giorgia ;
Bango, Clyde ;
Penney, Kathryn L. ;
Tyekucheva, Svitlana ;
Yanes, Oscar ;
Loda, Massimo .
MOLECULAR CANCER RESEARCH, 2017, 15 (04) :439-447
[7]   Using a lipidomics approach for nutritional phenotyping in response to a test meal containing gamma-linolenic acid [J].
Cajka, Tomas ;
Davis, Ryan ;
Austin, Kathryn J. ;
Newman, John W. ;
German, J. Bruce ;
Fiehn, Oliver ;
Smilowitz, Jennifer T. .
METABOLOMICS, 2016, 12 (08)
[8]   Increasing lipidomic coverage by selecting optimal mobile-phase modifiers in LC-MS of blood plasma [J].
Cajka, Tomas ;
Fiehn, Oliver .
METABOLOMICS, 2016, 12 (02) :1-11
[9]   Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based Metabolomics and Lipidomics [J].
Cajka, Tomas ;
Fiehn, Oliver .
ANALYTICAL CHEMISTRY, 2016, 88 (01) :524-545
[10]   The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases [J].
Caspi, Ron ;
Billington, Richard ;
Ferrer, Luciana ;
Foerster, Hartmut ;
Fulcher, Carol A. ;
Keseler, Ingrid M. ;
Kothari, Anamika ;
Krummenacker, Markus ;
Latendresse, Mario ;
Mueller, Lukas A. ;
Ong, Quang ;
Paley, Suzanne ;
Subhraveti, Pallavi ;
Weaver, Daniel S. ;
Karp, Peter D. .
NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) :D471-D480