Sensor Space Time-Varying Information Flow Analysis of Multiclass Motor Imagery through Kalman Smoother and EM Algorithm
被引:0
|
作者:
Hamedi, Mahyar
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Ctr Biomed Engn, Transportat Res Alliance, Johor Baharu, MalaysiaUniv Teknol Malaysia, Ctr Biomed Engn, Transportat Res Alliance, Johor Baharu, Malaysia
Hamedi, Mahyar
[1
]
Salleh, Sh-Hussain
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Ctr Biomed Engn, Transportat Res Alliance, Johor Baharu, MalaysiaUniv Teknol Malaysia, Ctr Biomed Engn, Transportat Res Alliance, Johor Baharu, Malaysia
Salleh, Sh-Hussain
[1
]
Ting, Chee-Ming
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Ctr Biomed Engn, Transportat Res Alliance, Johor Baharu, MalaysiaUniv Teknol Malaysia, Ctr Biomed Engn, Transportat Res Alliance, Johor Baharu, Malaysia
Ting, Chee-Ming
[1
]
Samdin, S. Balqis
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Ctr Biomed Engn, Transportat Res Alliance, Johor Baharu, MalaysiaUniv Teknol Malaysia, Ctr Biomed Engn, Transportat Res Alliance, Johor Baharu, Malaysia
Samdin, S. Balqis
[1
]
Noor, Alias Mohd
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia, Ctr Biomed Engn, Transportat Res Alliance, Johor Baharu, MalaysiaUniv Teknol Malaysia, Ctr Biomed Engn, Transportat Res Alliance, Johor Baharu, Malaysia
Noor, Alias Mohd
[1
]
机构:
[1] Univ Teknol Malaysia, Ctr Biomed Engn, Transportat Res Alliance, Johor Baharu, Malaysia
来源:
2015 INTERNATIONAL CONFERENCE ON BIOSIGNAL ANALYSIS, PROCESSING AND SYSTEMS (ICBAPS)
|
2015年
关键词:
brain connectivity analysis;
motor imagery movement;
sensor space connectivity;
electroencephalogram;
state space model;
EEG ACTIVITY;
PROPAGATION;
MOVEMENT;
D O I:
暂无
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Inter-channel time-varying (TV) relationships of scalp neural recordings offer deep understanding of the brain sensory and cognitive functions. This paper develops a state space-based TV multivariate autoregressive (MVAR) model for estimating TV-information flow (IF) recruited by different motor imagery (MI) movements. TV model coefficients are computed through Kalman filter (KF) by incorporating Kalman smoothing approach and expectation-maximization algorithm for model parameter estimation, KS-EM. Volume conduction (VC) problem is also addressed by considering full noise covariate in observation equation. An automated model initialization is also implemented to deliver optimal estimates. TV-partial directed coherence derived from the proposed model is applied for IF analysis. The performance of KS-EM is assessed and compared with dual extended KF and overlapping sliding window-based MVAR models using simulated data. Finally, TV-IF during four different MI movements is studied. Results show the superiority of KS-EM for tracking the rapid signal parameter changes and eliminating the VC effect in the sensor space EEG. Differences in contralateral/ipsilateral TV-IF around alpha and lower beta bands during each MI task reveal the high potential of this feature for BCI applications.