Lagrange inversion

被引:62
作者
Gessel, Ira M. [1 ]
机构
[1] Brandeis Univ, Dept Math, Waltham, MA 02453 USA
关键词
Lagrange inversion; Compositional inverse; Formal power series; Trees; SERIES; FORMULA; POLYNOMIALS; ENUMERATION; NUMBERS; PATHS;
D O I
10.1016/j.jcta.2016.06.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a survey of the Lagrange inversion formula, including different versions and proofs, with applications to combinatorial and formal power series identities. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:212 / 249
页数:38
相关论文
共 80 条
[31]  
GESSEL I, 1980, T AM MATH SOC, V257, P455, DOI 10.2307/1998307
[32]   APPLICATIONS OF Q-LAGRANGE INVERSION TO BASIC HYPERGEOMETRIC-SERIES [J].
GESSEL, I ;
STANTON, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :173-201
[34]   A FACTORIZATION FOR FORMAL LAURENT SERIES AND LATTICE PATH ENUMERATION [J].
GESSEL, IM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1980, 28 (03) :321-337
[35]   LAGRANGE INVERSION FOR SPECIES [J].
GESSEL, IM ;
LABELLE, G .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1995, 72 (01) :95-117
[36]   EULER FORMULA FOR NTH DIFFERENCES OF POWERS [J].
GOULD, HW .
AMERICAN MATHEMATICAL MONTHLY, 1978, 85 (06) :450-467
[37]  
Graham Ronald L., 1994, Concrete Mathematics: A Foundation For Computer Science, V2nd
[38]  
Hagen Johann G., 1891, SYNOPSIS HOEHEREN MA, V1
[39]  
Hirzebruch F., 1971, ANN MATH STUD, V70, P3
[40]  
Hofbauer Josef, 1982, SEM LOTHAR COMBIN, V6