A Review of the Autoencoder and Its Variants A comparative perspective from target recognition in synthetic-aperture radar images

被引:151
作者
Dong, Ganggang [1 ,5 ]
Liao, Guisheng [2 ,3 ,4 ,5 ]
Liu, Hongwei [5 ]
Kuang, Gangyao [6 ]
机构
[1] Natl Univ Def Technol, Informat & Commun Engn, Changsha, Peoples R China
[2] Xidian Univ, Xian, Shaanxi, Peoples R China
[3] Xidian Univ, Sch Elect Engn, Xian, Shaanxi, Peoples R China
[4] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
[5] Xidian Univ, Natl Lab Radar Signal Proc, Xian, Shaanxi, Peoples R China
[6] Natl Univ Def Technol, Remote Sensing Informat Proc Lab, Changsha, Hunan, Peoples R China
关键词
CONVOLUTIONAL NEURAL-NETWORK; SPARSE AUTOENCODER; SAR IMAGES; FEATURE-EXTRACTION; HYPERSPECTRAL DATA; FACE RECOGNITION; CLASSIFICATION; REPRESENTATION; FEATURES; MODEL;
D O I
10.1109/MGRS.2018.2853555
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In recent years, unsupervised feature learning based on a neural network architecture has become a hot new topic for research [1]-[4]. The revival of interest in such deep networks can be attributed to the development of efficient optimization skills, by which the model parameters can be optimally estimated [5]. The milestone work done by Hinton and Salakhutdinov [6] proposes to initialize the weights that allow deep autoencoder networks to learn lowdimensional codes. The encoding trick introduced works much better than principal component analysis (PCA) in terms of dimension reduction. © 2013 IEEE.
引用
收藏
页码:44 / 68
页数:25
相关论文
共 110 条
[1]  
[Anonymous], 2006, ADV NEURAL INFORM PR
[2]   Multidate Divergence Matrices for the Analysis of SAR Image Time Series [J].
Atto, Abdourrahmane Mahamane ;
Trouve, Emmanuel ;
Berthoumieu, Yannick ;
Mercier, Gregoire .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (04) :1922-1938
[3]  
Bengio Y., 2006, ADV NEURAL INFORM PR, V19
[4]   Representation Learning: A Review and New Perspectives [J].
Bengio, Yoshua ;
Courville, Aaron ;
Vincent, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1798-1828
[5]   Building feature space of extreme learning machine with sparse denoising stacked-autoencoder [J].
Cao, Le-le ;
Huang, Wen-bing ;
Sun, Fu-chun .
NEUROCOMPUTING, 2016, 174 :60-71
[6]   Target Classification Using the Deep Convolutional Networks for SAR Images [J].
Chen, Sizhe ;
Wang, Haipeng ;
Xu, Feng ;
Jin, Ya-Qiu .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08) :4806-4817
[7]  
Chen Y., 2018, IEEE J-STARS, V7, P2094
[8]   Multilayer Projective Dictionary Pair Learning and Sparse Autoencoder for PolSAR Image Classification [J].
Chen, Yanqiao ;
Jiao, Licheng ;
Li, Yangyang ;
Zhao, Jin .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (12) :6683-6694
[9]   Effective and Efficient Midlevel Visual Elements-Oriented Land-Use Classification Using VHR Remote Sensing Images [J].
Cheng, Gong ;
Han, Junwei ;
Guo, Lei ;
Liu, Zhenbao ;
Bu, Shuhui ;
Ren, Jinchang .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (08) :4238-4249
[10]   Unsupervised Feature Learning for Aerial Scene Classification [J].
Cheriyadat, Anil M. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01) :439-451