LAMA: automated image analysis for the developmental phenotyping of mouse embryos

被引:8
作者
Horner, Neil R. [1 ]
Venkataraman, Shanmugasundaram [2 ]
Armit, Chris [2 ,3 ]
Casero, Ramon [1 ]
Brown, James M. [4 ]
Wong, Michael D. [5 ]
van Eede, Matthijs C. [5 ]
Henkelman, R. Mark [5 ]
Johnson, Sara [1 ]
Teboul, Lydia [1 ]
Wells, Sara [1 ]
Brown, Steve D. [1 ]
Westerberg, Henrik [1 ]
Mallon, Ann-Marie [1 ]
机构
[1] Med Res Council Harwell Inst, Harwell OX11 0RD, Berks, England
[2] Univ Edinburgh, MRC Inst Genet & Mol Med IGMM, MRC Human Genet Unit, Edinburgh EH4 2XU, Midlothian, Scotland
[3] BGI Hong Kong, Shek Mun, 26-F Kings Wing Plaza 2,1 On Kwan St, Hong Kong, Peoples R China
[4] Univ Lincoln, Sch Comp Sci, Lincoln LN6 7TS, England
[5] Hosp Sick Children, Mouse Imaging Ctr, Toronto, ON M5T 3H7, Canada
来源
DEVELOPMENT | 2021年 / 148卷 / 18期
基金
英国医学研究理事会; 美国国家卫生研究院;
关键词
Automated; Computational; Embryo; Micro-CT; Mouse; Phenotyping; HE-4; WFDC2; DISCOVERY; ATLAS; CONSORTIUM; SCREENS;
D O I
10.1242/dev.192955
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Advanced 3D imaging modalities, such as micro-computed tomography (micro-CT), have been incorporated into the high-throughput embryo pipeline of the International Mouse Phenotyping Consortium (IMPC). This project generates large volumes of raw data that cannot be immediately exploited without significant resources of personnel and expertise. Thus, rapid automated annotation is crucial to ensure that 3D imaging data can be integrated with other multi-dimensional phenotyping data. We present an automated computational mouse embryo phenotyping pipeline that harnesses the large amount of wild-type control data available in the IMPC embryo pipeline in order to address issues of low mutant sample number as well as incomplete penetrance and variable expressivity. We also investigate the effect of developmental substage on automated phenotyping results. Designed primarily for developmental biologists, our software performs image pre-processing, registration, statistical analysis and segmentation of embryo images. We also present a novel anatomical E14.5 embryo atlas average and, using it with LAMA, show that we can uncover known and novel dysmorphology from two IMPC knockout lines.
引用
收藏
页数:13
相关论文
共 51 条
  • [1] Bloomsbury report on mouse embryo phenotyping: recommendations from the IMPC workshop on embryonic lethal screening
    Adams, David
    Baldock, Richard
    Bhattacharya, Shoumo
    Copp, Andrew J.
    Dickinson, Mary
    Greene, Nicholas D. E.
    Henkelman, Mark
    Justice, Monica
    Mohun, Timothy
    Murray, Stephen A.
    Pauws, Erwin
    Raess, Michael
    Rossant, Janet
    Weaver, Tom
    West, David
    [J]. DISEASE MODELS & MECHANISMS, 2013, 6 (03) : 571 - 579
  • [2] Voxel-based morphometry - The methods
    Ashburner, J
    Friston, KJ
    [J]. NEUROIMAGE, 2000, 11 (06) : 805 - 821
  • [3] Automated Mouse Organ Segmentation: A Deep Learning Based Solution
    Ashish, Naveen
    Brusniak, Mi-Youn
    [J]. ACM-BCB'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2018, : 236 - 243
  • [4] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [5] The putative ovarian tumour marker gene HE4 (WFDC2), is expressed in normal tissues and undergoes complex alternative splicing to yield multiple protein isoforms
    Bingle, L
    Singleton, V
    Bingle, CD
    [J]. ONCOGENE, 2002, 21 (17) : 2768 - 2773
  • [6] Birling M. -C., 2019, RESOURCE TARGETED MU
  • [7] A landmark-free morphometric staging system for the mouse limb bud
    Boehm, Bernd
    Rautschka, Michael
    Quintana, Laura
    Raspopovic, Jelena
    Jan, Ziga
    Sharpe, James
    [J]. DEVELOPMENT, 2011, 138 (06): : 1227 - 1234
  • [8] A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction
    Bowl, Michael R.
    Simon, Michelle M.
    Ingham, Neil J.
    Greenaway, Simon
    Santos, Luis
    Cater, Heather
    Taylor, Sarah
    Mason, Jeremy
    Kurbatova, Natalja
    Pearson, Selina
    Bower, Lynette R.
    Clary, Dave A.
    Meziane, Hamid
    Reilly, Patrick
    Minowa, Osamu
    Kelsey, Lois
    Tocchini-Valentini, Glauco P.
    Gao, Xiang
    Bradley, Allan
    Skarnes, William C.
    Moore, Mark
    Beaudet, Arthur L.
    Justice, Monica J.
    Seavitt, John
    Dickinson, Mary E.
    Wurst, Wolfgang
    de Angelis, Martin Hrabe
    Herault, Yann
    Wakana, Shigeharu
    Nutter, Lauryl M. J.
    Flenniken, Ann M.
    McKerlie, Colin
    Murray, Stephen A.
    Svenson, Karen L.
    Braun, Robert E.
    West, David B.
    Lloyd, K. C. Kent
    Adams, David J.
    White, Jacqui
    Karp, Natasha
    Flicek, Paul
    Smedley, Damian
    Meehan, Terrence F.
    Parkinson, Helen E.
    Teboul, Lydia M.
    Wells, Sara
    Steel, Karen P.
    Mallon, Ann-Marie
    Brown, Steve D. M.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [9] A bioimage informatics platform for high-throughput embryo phenotyping
    Brown, James M.
    Horner, Neil R.
    Lawson, Thomas N.
    Fiegel, Tanja
    Greenaway, Simon
    Morgan, Hugh
    Ring, Natalie
    Santos, Luis
    Sneddon, Duncan
    Teboul, Lydia
    Vibert, Jennifer
    Yaikhom, Gagarine
    Westerberg, Henrik
    Mallon, Ann-Marie
    [J]. BRIEFINGS IN BIOINFORMATICS, 2018, 19 (01) : 41 - 51
  • [10] The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping
    Brown, Steve D. M.
    Moore, Mark W.
    [J]. MAMMALIAN GENOME, 2012, 23 (9-10) : 632 - 640