PRED: A PARALLEL NETWORK FOR HANDLING MULTIPLE DEGRADATIONS VIA SINGLE MODEL IN SINGLE IMAGE SUPER-RESOLUTION

被引:0
作者
Wu, Guangyang [1 ]
Zhao, Lili [1 ]
Wang, Wenyi [1 ]
Zeng, Liaoyuan [1 ]
Chen, Jianwen [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Sichuan, Peoples R China
来源
2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2019年
基金
中国国家自然科学基金;
关键词
SISR; multiple degradation; CNN; PRED;
D O I
10.1109/icip.2019.8804409
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Existing SISR (single image super-resolution) methods mostly assume that a low-resolution (LR) image is bicubicly down-sampled from its high-resolution (HR) counterpart, which inevitably give rise to poor performance when the degradation is out of assumption. To address this issue, we propose a framework PRED (parallel residual and encoder-decoder network) with an innovative training strategy to enhance the robustness to multiple degradations. Consequently, the network can handle spatially variant degradations, which significantly improves the practicability of the proposed method. Extensive experimental results on real LR images show that the proposed method can not only produce favorable results on multiple degradations, but also reconstruct visually plausible HR images.
引用
收藏
页码:2881 / 2885
页数:5
相关论文
共 21 条
[11]  
Klambauer G., 2017, Advances in Neural Information Processing Systems, V30, P972
[12]   Robust Single Image Super-Resolution via Deep Networks With Sparse Prior [J].
Liu, Ding ;
Wang, Zhaowen ;
Wen, Bihan ;
Yang, Jianchao ;
Han, Wei ;
Huang, Thomas S. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (07) :3194-3207
[13]  
Martin D, 2001, EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL II, PROCEEDINGS, P416, DOI 10.1109/ICCV.2001.937655
[14]  
Odena A., 2016, DISTILL, V1, P3, DOI DOI 10.23915/DISTILL.00003
[15]   RAISR: Rapid and Accurate Image Super Resolution [J].
Romano, Yaniv ;
Isidoro, John ;
Milanfar, Peyman .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2017, 3 (01) :110-125
[16]  
Salimans T, 2016, ADV NEUR IN, V29
[17]   Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network [J].
Shi, Wenzhe ;
Caballero, Jose ;
Huszar, Ferenc ;
Totz, Johannes ;
Aitken, Andrew P. ;
Bishop, Rob ;
Rueckert, Daniel ;
Wang, Zehan .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1874-1883
[18]   A plus : Adjusted Anchored Neighborhood Regression for Fast Super-Resolution [J].
Timofte, Radu ;
De Smet, Vincent ;
Van Gool, Luc .
COMPUTER VISION - ACCV 2014, PT IV, 2015, 9006 :111-126
[19]  
Yang CY, 2014, LECT NOTES COMPUT SC, V8692, P372, DOI 10.1007/978-3-319-10593-2_25
[20]  
Yu Jiahui, 2018, Wide activation for efficient and accurate image super-resolution