Prediction of hot regions in protein-protein interaction based on the Gi statistics and cascade classifier

被引:0
|
作者
Tan, Bingqin [1 ]
Zhang, Xiaolong [1 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Comp Sci & Technol, Hubei Key Lab Intelligent Informat Proc & Real Ti, Wuhan 430065, Peoples R China
来源
2014 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) | 2014年
关键词
protein-protein interaction; hot region; Gi statistics; cascade classifier; Robatta; ORGANIZATION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
There is an important relationship between the stability of protein complex and hot region. Research has shown that in protein-protein interaction (PPI), residues are denser around the hot region. Therefore, this paper proposed an algorithm based on Gi statistics, regional division rule and regional amplification principle to form residue dense region (RDR); Then, according to the results of cascade classifier composed of Naive Bayes and Back-Propagation (BP) neural network classifier, non-hotspot residues in RDRs were removed; At length, we used binding free energy change value calculated from Robetta Server to modify predicted hot regions. The experimental results showd that the proposed method can effectively improve the prediction accuracy on hot regions.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Prediction of protein-protein interaction sites in heterocomplexes with neural networks
    Fariselli, P
    Pazos, F
    Valencia, A
    Casadio, R
    EUROPEAN JOURNAL OF BIOCHEMISTRY, 2002, 269 (05): : 1356 - 1361
  • [42] Prediction of Protein-Protein Interaction Relevance of Articles Using References
    Calli, Cagatay
    2009 24TH INTERNATIONAL SYMPOSIUM ON COMPUTER AND INFORMATION SCIENCES, 2009, : 189 - 192
  • [43] Protein-Protein Interaction Prediction Based on Spectral Radius and General Regression Neural Network
    Xu, Hanxiao
    Xu, Da
    Zhang, Naiqian
    Zhang, Yusen
    Gao, Rui
    JOURNAL OF PROTEOME RESEARCH, 2021, 20 (03) : 1657 - 1665
  • [44] Protein-protein interaction prediction based on ordinal regression and recurrent convolutional neural networks
    Xu, Weixia
    Gao, Yangyun
    Wang, Yang
    Guan, Jihong
    BMC BIOINFORMATICS, 2021, 22 (SUPPL 6)
  • [45] ANOVA-particle swarm optimization-based feature selection and gradient boosting machine classifier for improved protein-protein interaction prediction
    Mahapatra, Satyajit
    Sahu, Sitanshu Sekhar
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2022, 90 (02) : 443 - 454
  • [46] Protein-protein interaction prediction with deep learning: A comprehensive review
    Soleymani, Farzan
    Paquet, Eric
    Viktor, Herna
    Michalowski, Wojtek
    Spinello, Davide
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 5316 - 5341
  • [47] Prediction of Protein-Protein Interaction using validated domain-domain interaction
    Das, Poulami
    Chatterjee, Piyali
    Basu, Subhadip
    Kundu, Mahantapas
    Nasipuri, Mita
    2011 ANNUAL IEEE INDIA CONFERENCE (INDICON-2011): ENGINEERING SUSTAINABLE SOLUTIONS, 2011,
  • [48] Protein Complex Prediction in Large Ontology Attributed Protein-Protein Interaction Networks
    Zhang, Yijia
    Lin, Hongfei
    Yang, Zhihao
    Wang, Jian
    Li, Yanpeng
    Xu, Bo
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2013, 10 (03) : 729 - 741
  • [49] Assessment of prediction accuracy of protein function from protein-protein interaction data
    Hishigaki, H
    Nakai, K
    Ono, T
    Tanigami, A
    Takagi, T
    YEAST, 2001, 18 (06) : 523 - 531
  • [50] Protein-protein interaction prediction methods: from docking-based to AI-based approaches
    Tsuchiya, Yuko
    Yamamori, Yu
    Tomii, Kentaro
    BIOPHYSICAL REVIEWS, 2022, 14 (06) : 1341 - 1348