Adaptive phase correction of diffusion-weighted images

被引:15
作者
Pizzolato, Marco [1 ]
Gilbert, Guillaume [2 ]
Thiran, Jean-Philippe [1 ,3 ,4 ]
Descoteaux, Maxime [5 ]
Deriche, Rachid [6 ]
机构
[1] Ecole Polytech Fed Lausanne, Signal Proc Lab LTS5, Lausanne, Switzerland
[2] Philips Healthcare Canada, MR Clin Sci, Markham, ON, Canada
[3] CHU Vaudois, Radiol Dept, Lausanne, Switzerland
[4] Univ Lausanne, Lausanne, Switzerland
[5] Univ Sherbrooke, SCIL, Sherbrooke, PQ, Canada
[6] Univ Cote Azur, Inria Sophia Antipolis Mediterranee, Nice, France
基金
瑞士国家科学基金会; 欧盟地平线“2020”;
关键词
Phase correction; Phase estimation; Oriented laplacian; Diffusion MRI; Rician noise; MAGNETIC-RESONANCE IMAGES; TO-NOISE RATIO; MR-IMAGES; FOURIER RECONSTRUCTION; ANISOTROPIC DIFFUSION; RICIAN NOISE; MAP-MRI; TENSOR; REGULARIZATION; FRAMEWORK;
D O I
10.1016/j.neuroimage.2019.116274
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Phase correction (PC) is a preprocessing technique that exploits the phase of images acquired in Magnetic Resonance Imaging (MRI) to obtain real-valued images containing tissue contrast with additive Gaussian noise, as opposed to magnitude images which follow a non-Gaussian distribution, e.g. Rician. PC finds its natural application to diffusion-weighted images (DWIs) due to their inherent low signal-to-noise ratio and consequent non-Gaussianity that induces a signal overestimation bias that propagates to the calculated diffusion indices. PC effectiveness depends upon the quality of the phase estimation, which is often performed via a regularization procedure. We show that a suboptimal regularization can produce alterations of the true image contrast in the real-valued phase-corrected images. We propose adaptive phase correction (APC), a method where the phase is estimated by using MRI noise information to perform a complex-valued image regularization that accounts for the local variance of the noise. We show, on synthetic and acquired data, that APC leads to phase-corrected real-valued DWIs that present a reduced number of alterations and a reduced bias. The substantial absence of parameters for which human input is required favors a straightforward integration of APC in MRI processing pipelines.
引用
收藏
页数:17
相关论文
共 74 条
[51]   Non-Stationary Rician Noise Estimation in Parallel MRI Using a Single Image: A Variance-Stabilizing Approach [J].
Pieciak, Tomasz ;
Aja-Fernandez, Santiago ;
Vegas-Sanchez-Ferrero, Gonzalo .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (10) :2015-2029
[52]  
Pizzolato M., 2016, International Conference on Medical Image Computing and Computer-Assisted Intervention, P21
[53]  
Pizzolato M, 2019, I S BIOMED IMAGING, P1639, DOI [10.1109/isbi.2019.8759338, 10.1109/ISBI.2019.8759338]
[54]   A Simple Method for Rectified Noise Floor Suppression: Phase-Corrected Real Data Reconstruction With Application to Diffusion-Weighted Imaging [J].
Prah, Douglas E. ;
Paulson, Eric S. ;
Nencka, Andrew S. ;
Schmainda, Kathleen M. .
MAGNETIC RESONANCE IN MEDICINE, 2010, 64 (02) :418-429
[55]  
Pruessmann KP, 1999, MAGNET RESON MED, V42, P952, DOI 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO
[56]  
2-S
[57]   Monte-Carlo Sure: A black-box optimization of regularization parameters for general denoising algorithms [J].
Ramani, Sathish ;
Blu, Thierry ;
Unser, Michael .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (09) :1540-1554
[58]   NONLINEAR TOTAL VARIATION BASED NOISE REMOVAL ALGORITHMS [J].
RUDIN, LI ;
OSHER, S ;
FATEMI, E .
PHYSICA D, 1992, 60 (1-4) :259-268
[59]   Anisotropic diffusion of multivalued images with applications to color filtering [J].
Sapiro, G ;
Ringach, DL .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1996, 5 (11) :1582-1586
[60]   Limits to anatomical accuracy of diffusion tractography using modern approaches [J].
Schilling, Kurt G. ;
Nath, Vishwesh ;
Hansen, Colin ;
Parvathaneni, Prasanna ;
Blaber, Justin ;
Gao, Yurui ;
Neher, Peter ;
Aydogan, Dogu Baran ;
Shi, Yonggang ;
Ocampo-Pineda, Mario ;
Schiavi, Simona ;
Daducci, Alessandro ;
Girard, Gabriel ;
Barakovic, Muhamed ;
Rafael-Patino, Jonathan ;
Romascano, David ;
Rensonnet, Gaetan ;
Pizzolato, Marco ;
Bates, Alice ;
Fischi, Elda ;
Thiran, Jean-Philippe ;
Canales-Rodriguez, Erick J. ;
Huang, Chao ;
Zhu, Hongtu ;
Zhong, Liming ;
Cabeen, Ryan ;
Toga, Arthur W. ;
Rheault, Francois ;
Theaud, Guillaume ;
Houde, Jean-Christophe ;
Sidhu, Jasmeen ;
Chamberland, Maxime ;
Westin, Carl-Fredrik ;
Dyrby, Tim B. ;
Verma, Ragini ;
Rathi, Yogesh ;
Irfanoglu, M. Okan ;
Thomas, Cibu ;
Pierpaoli, Carlo ;
Descoteaux, Maxime ;
Anderson, Adam W. ;
Landman, Bennett A. .
NEUROIMAGE, 2019, 185 :1-11