A New Iterative Method for Solving Equilibrium Problems and Fixed Point Problems for Infinite Family of Nonexpansive Mappings

被引:5
作者
Wang, Shenghua [3 ]
Cho, Yeol Je [1 ,2 ]
Qin, Xiaolong [4 ]
机构
[1] Gyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
[2] Gyeongsang Natl Univ, RINS, Chinju 660701, South Korea
[3] N China Elect Power Univ, Sch Math & Phys, Baoding 071003, Peoples R China
[4] Hangzhou Normal Univ, Dept Math, Hangzhou 310036, Zhejiang, Peoples R China
来源
FIXED POINT THEORY AND APPLICATIONS | 2010年
关键词
STEEPEST-DESCENT METHODS; APPROXIMATION METHODS; CONVERGENCE THEOREMS;
D O I
10.1155/2010/165098
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new iterative scheme for finding a common element of the solutions sets of a finite family of equilibrium problems and fixed points sets of an infinite family of nonexpansive mappings in a Hilbert space. As an application, we solve a multiobjective optimization problem using the result of this paper.
引用
收藏
页数:18
相关论文
共 20 条
[1]  
[Anonymous], 1980, Pure and Applied Mathematics
[2]  
Blum E., 1994, Math. Stud., V63, P127
[3]   Implicit Iteration Scheme with Perturbed Mapping for Equilibrium Problems and Fixed Point Problems of Finitely Many Nonexpansive Mappings [J].
Ceng, L. C. ;
Schaible, S. ;
Yao, J. C. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2008, 139 (02) :403-418
[4]   Iterative Approaches to Solving Equilibrium Problems and Fixed Point Problems of Infinitely Many Nonexpansive Mappings [J].
Ceng, L. C. ;
Petrusel, A. ;
Yao, J. C. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 143 (01) :37-58
[5]   A hybrid steepest-descent method for variational inequalities in Hilbert spaces [J].
Ceng, Lu-Chuan ;
Xu, Hong-Kun ;
Yao, Jen-Chih .
APPLICABLE ANALYSIS, 2008, 87 (05) :575-589
[6]  
Chang SS, 2008, DYNAM SYST APPL, V17, P503
[7]   A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization [J].
Chang, Shih-sen ;
Lee, H. W. Joseph ;
Chan, Chi Kin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (09) :3307-3319
[8]   Convergence theorems based on hybrid methods for generalized equilibrium problems and fixed point problems [J].
Cho, Yeol Je ;
Qin, Xiaolong ;
Kang, Jung Im .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) :4203-4214
[9]   An iterative method for finding common solutions of equilibrium and fixed point problems [J].
Colao, Vittorio ;
Marino, Giuseppe ;
Xu, Hong-Kun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (01) :340-352
[10]  
Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117