HIGHER-ORDER MELNIKOV METHOD AND CHAOS FOR TWO-DEGREE-OF-FREEDOM HAMILTONIAN SYSTEMS WITH SADDLE-CENTERS

被引:4
作者
Yagasaki, Kazuyuki [1 ]
机构
[1] Gifu Univ, Dept Mech & Syst Engn, Gifu 5011193, Japan
关键词
Melnikov method; chaos; Smale horseshoe; Hamiltonian system; saddle-center; Henon-Heiles system; 1ST INTEGRALS; ORBITS;
D O I
10.3934/dcds.2011.29.387
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider two-degree-of-freedom Hamiltonian systems with saddle-centers, and develop a Melnikov-type technique for detecting creation of transverse homoclinic orbits by higher-order terms. We apply the technique to the generalized Henon-Heiles system and give a positive answer to a remaining question of whether chaotic dynamics occurs for some parameter values although it is known to be nonintegrable in a complex analytical meaning.
引用
收藏
页码:387 / 402
页数:16
相关论文
共 40 条
  • [11] FENICHEL N, 1971, INDIANA U MATH J, V21, P193
  • [12] Goriely A., 2001, Integrability and Nonintegrability of Dynamical Systems, VVolume 19
  • [13] Grotta-Ragazzo C., 1997, COMMUN PURE APPL MAT, V50, P105
  • [14] Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42
  • [15] Hairer E., 1993, SOLVING ORDINARY DIF, V8
  • [16] Haller G, 1999, CHAOS NEAR RESONANCE
  • [17] APPLICABILITY OF 3 INTEGRAL OF MOTION - SOME NUMERICAL EXPERIMENTS
    HENON, M
    HEILES, C
    [J]. ASTRONOMICAL JOURNAL, 1964, 69 (01) : 73 - &
  • [18] A CRITERION FOR NONINTEGRABILITY OF HAMILTONIAN-SYSTEMS WITH NONHOMOGENEOUS POTENTIALS
    ITO, H
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1987, 38 (03): : 459 - 476
  • [19] Ito H., 1985, Kodai Math. J, V8, P120, DOI DOI 10.2996/KMJ/1138037004
  • [20] PERIODIC AND HOMOCLINIC ORBITS IN A 2-PARAMETER UNFOLDING OF A HAMILTONIAN SYSTEM WITH A HOMOCLINIC ORBIT TO A SADDLE-CENTER
    KOLTSOVA, OY
    LERMAN, LM
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (02): : 397 - 408