A fast state-of-health estimation method using single linear feature for lithium-ion batteries

被引:38
作者
Shi, Mingjie [1 ,2 ]
Xu, Jun [1 ,2 ]
Lin, Chuanping [1 ,2 ]
Mei, Xuesong [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Mech Engn, Shaanxi Key Lab Intelligent Robots, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium -ion battery; State of health; Fast estimation; Linear regression; REGRESSION; CHARGE; MODEL;
D O I
10.1016/j.energy.2022.124652
中图分类号
O414.1 [热力学];
学科分类号
摘要
Data-driven methods are commonly used for state of health (SOH) estimation, which is essential to battery energy management. However, complex machine learning models, data gathering, and feature processing hinder its further implementation. A fast SOH estimation method based on linear properties of short-time charging is proposed to overcome these challenges. Only the exceptional single linear health factor (LHF) is required for effective SOH estimation. The LHF is chosen through correlation analysis from short- term feature derived from charging curves. The processing is straightforward. To define the relationship between LHF and SOH, a linear regression model is developed. For the simplicity and effectiveness of the method, it is suitable to be implemented in online applications with low hardware requirements. Finally, experiments show that the SOH estimation method has the highest accuracy of 0.54%, and the biggest estimation error is 2.20%. Furthermore, the data from first 20% cycles of the battery are used to build the model, ensuring that the SOH estimation accuracy is comparable. It is worth noting that the time cost of data acquisition does not exceed 30 s, which is important for fast estimation. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 42 条
[1]   A Novel Model-Based Voltage Construction Method for Robust State-of-Health Estimation of Lithium-Ion Batteries [J].
Bian, Xiaolei ;
Wei, Zhongbao ;
He, Jiangtao ;
Yan, Fengjun ;
Liu, Longcheng .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (12) :12173-12184
[2]   State of Charge and State of Health Estimation for Lithium Batteries Using Recurrent Neural Networks [J].
Chaoui, Hicham ;
Ibe-Ekeocha, Chinemerem Christopher .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2017, 66 (10) :8773-8783
[3]   State of health (SoH) estimation and degradation modes analysis of pouch NMC532/graphite Li-ion battery [J].
Chen, Xiaoxuan ;
Hu, Yonggang ;
Li, Sheng ;
Wang, Yuexing ;
Li, Dongjiang ;
Luo, Chuanjun ;
Xue, Xujin ;
Xu, Fei ;
Zhang, Zhongru ;
Gong, Zhengliang ;
Li, Yangxing ;
Yang, Yong .
JOURNAL OF POWER SOURCES, 2021, 498
[4]   State of health estimation for lithium-ion batteries based on temperature prediction and gated recurrent unit neural network [J].
Chen, Zheng ;
Zhao, Hongqian ;
Zhang, Yuanjian ;
Shen, Shiquan ;
Shen, Jiangwei ;
Liu, Yonggang .
JOURNAL OF POWER SOURCES, 2022, 521
[5]   Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter [J].
Chen, Zheng ;
Zhao, Hongqian ;
Shu, Xing ;
Zhang, Yuanjian ;
Shen, Jiangwei ;
Liu, Yonggang .
ENERGY, 2021, 228
[6]   Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network [J].
Cheng, Gong ;
Wang, Xinzhi ;
He, Yurong .
ENERGY, 2021, 232
[7]   Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries [J].
Deng, Yuanwang ;
Ying, Hejie ;
Jiaqiang, E. ;
Zhu, Hao ;
Wei, Kexiang ;
Chen, Jingwei ;
Zhang, Feng ;
Liao, Gaoliang .
ENERGY, 2019, 176 :91-102
[8]   General Discharge Voltage Information Enabled Health Evaluation for Lithium-Ion Batteries [J].
Deng, Zhongwei ;
Hu, Xiaosong ;
Lin, Xianke ;
Xu, Le ;
Che, Yunhong ;
Hu, Lin .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2021, 26 (03) :1295-1306
[9]   A Fast Impedance Calculation-Based Battery State-of-Health Estimation Method [J].
Fu, Yumeng ;
Xu, Jun ;
Shi, Mingjie ;
Mei, Xuesong .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (07) :7019-7028
[10]   Co-Estimation of State-of-Charge and State-of- Health for Lithium-Ion Batteries Using an Enhanced Electrochemical Model [J].
Gao, Yizhao ;
Liu, Kailong ;
Zhu, Chong ;
Zhang, Xi ;
Zhang, Dong .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (03) :2684-2696