Existence and exponential decay of global solutions to the Boltzmann equation near Maxwellians

被引:7
作者
Yu, HJ [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
关键词
global-in-time classical solution; exponential decay; energy estimate;
D O I
10.1142/S0218202505000443
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under Grad angular cutoff assumption, we first establish the global-in-time classical solutions near Maxwellians to the Boltzmann equation in a periodic box. Furthermore, the exponential decay of such a solution is obtained.
引用
收藏
页码:483 / 505
页数:23
相关论文
共 18 条
[1]  
Bellomo N., 1988, Mathematical Topics in Nonlinear Kinetic Theory
[4]   CONVERGENCE TO EQUILIBRIUM IN LARGE TIME FOR BOLTZMANN AND BGK EQUATIONS [J].
DESVILLETTES, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 110 (01) :73-91
[5]   ON THE CAUCHY-PROBLEM FOR BOLTZMANN EQUATIONS - GLOBAL EXISTENCE AND WEAK STABILITY [J].
DIPERNA, RJ ;
LIONS, PL .
ANNALS OF MATHEMATICS, 1989, 130 (02) :321-366
[6]  
Glassey RT., 1996, CAUCHY PROBLEM KINET, DOI 10.1137/1.9781611971477
[7]   STATIONARY SOLUTIONS OF THE LINEARIZED BOLTZMANN-EQUATION IN A HALF-SPACE [J].
GOLSE, F ;
POUPAUD, F .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1989, 11 (04) :483-502
[8]   Classical solutions to the Boltzmann equation for molecules with an angular cutoff [J].
Guo, Y .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 169 (04) :305-353
[9]   The Vlasov-Maxwell-Boltzmann system near Maxwellians [J].
Guo, Y .
INVENTIONES MATHEMATICAE, 2003, 153 (03) :593-630
[10]   The Landau equation in a periodic box [J].
Guo, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 231 (03) :391-434